ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abbid Unicode version

Theorem abbid 2196
Description: Equivalent wff's yield equal class abstractions (deduction rule). (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
abbid.1  |-  F/ x ph
abbid.2  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
abbid  |-  ( ph  ->  { x  |  ps }  =  { x  |  ch } )

Proof of Theorem abbid
StepHypRef Expression
1 abbid.1 . . 3  |-  F/ x ph
2 abbid.2 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
31, 2alrimi 1456 . 2  |-  ( ph  ->  A. x ( ps  <->  ch ) )
4 abbi 2193 . 2  |-  ( A. x ( ps  <->  ch )  <->  { x  |  ps }  =  { x  |  ch } )
53, 4sylib 120 1  |-  ( ph  ->  { x  |  ps }  =  { x  |  ch } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103   A.wal 1283    = wceq 1285   F/wnf 1390   {cab 2068
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-11 1438  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075
This theorem is referenced by:  abbidv  2197  rabeqf  2595  sbcbid  2872
  Copyright terms: Public domain W3C validator