ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abexex Unicode version

Theorem abexex 6024
Description: A condition where a class builder continues to exist after its wff is existentially quantified. (Contributed by NM, 4-Mar-2007.)
Hypotheses
Ref Expression
abexex.1  |-  A  e. 
_V
abexex.2  |-  ( ph  ->  x  e.  A )
abexex.3  |-  { y  |  ph }  e.  _V
Assertion
Ref Expression
abexex  |-  { y  |  E. x ph }  e.  _V
Distinct variable group:    x, y, A
Allowed substitution hints:    ph( x, y)

Proof of Theorem abexex
StepHypRef Expression
1 df-rex 2422 . . . 4  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
2 abexex.2 . . . . . 6  |-  ( ph  ->  x  e.  A )
32pm4.71ri 389 . . . . 5  |-  ( ph  <->  ( x  e.  A  /\  ph ) )
43exbii 1584 . . . 4  |-  ( E. x ph  <->  E. x
( x  e.  A  /\  ph ) )
51, 4bitr4i 186 . . 3  |-  ( E. x  e.  A  ph  <->  E. x ph )
65abbii 2255 . 2  |-  { y  |  E. x  e.  A  ph }  =  { y  |  E. x ph }
7 abexex.1 . . 3  |-  A  e. 
_V
8 abexex.3 . . 3  |-  { y  |  ph }  e.  _V
97, 8abrexex2 6022 . 2  |-  { y  |  E. x  e.  A  ph }  e.  _V
106, 9eqeltrri 2213 1  |-  { y  |  E. x ph }  e.  _V
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   E.wex 1468    e. wcel 1480   {cab 2125   E.wrex 2417   _Vcvv 2686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator