ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abrexex2g Unicode version

Theorem abrexex2g 5775
Description: Existence of an existentially restricted class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
abrexex2g  |-  ( ( A  e.  V  /\  A. x  e.  A  {
y  |  ph }  e.  W )  ->  { y  |  E. x  e.  A  ph }  e.  _V )
Distinct variable groups:    x, A, y   
x, V, y    x, W, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem abrexex2g
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfv 1437 . . . 4  |-  F/ z E. x  e.  A  ph
2 nfcv 2194 . . . . 5  |-  F/_ y A
3 nfs1v 1831 . . . . 5  |-  F/ y [ z  /  y ] ph
42, 3nfrexxy 2378 . . . 4  |-  F/ y E. x  e.  A  [ z  /  y ] ph
5 sbequ12 1670 . . . . 5  |-  ( y  =  z  ->  ( ph 
<->  [ z  /  y ] ph ) )
65rexbidv 2344 . . . 4  |-  ( y  =  z  ->  ( E. x  e.  A  ph  <->  E. x  e.  A  [
z  /  y ]
ph ) )
71, 4, 6cbvab 2176 . . 3  |-  { y  |  E. x  e.  A  ph }  =  { z  |  E. x  e.  A  [
z  /  y ]
ph }
8 df-clab 2043 . . . . 5  |-  ( z  e.  { y  | 
ph }  <->  [ z  /  y ] ph )
98rexbii 2348 . . . 4  |-  ( E. x  e.  A  z  e.  { y  | 
ph }  <->  E. x  e.  A  [ z  /  y ] ph )
109abbii 2169 . . 3  |-  { z  |  E. x  e.  A  z  e.  {
y  |  ph } }  =  { z  |  E. x  e.  A  [ z  /  y ] ph }
117, 10eqtr4i 2079 . 2  |-  { y  |  E. x  e.  A  ph }  =  { z  |  E. x  e.  A  z  e.  { y  |  ph } }
12 df-iun 3687 . . 3  |-  U_ x  e.  A  { y  |  ph }  =  {
z  |  E. x  e.  A  z  e.  { y  |  ph } }
13 iunexg 5774 . . 3  |-  ( ( A  e.  V  /\  A. x  e.  A  {
y  |  ph }  e.  W )  ->  U_ x  e.  A  { y  |  ph }  e.  _V )
1412, 13syl5eqelr 2141 . 2  |-  ( ( A  e.  V  /\  A. x  e.  A  {
y  |  ph }  e.  W )  ->  { z  |  E. x  e.  A  z  e.  {
y  |  ph } }  e.  _V )
1511, 14syl5eqel 2140 1  |-  ( ( A  e.  V  /\  A. x  e.  A  {
y  |  ph }  e.  W )  ->  { y  |  E. x  e.  A  ph }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    = wceq 1259    e. wcel 1409   [wsb 1661   {cab 2042   A.wral 2323   E.wrex 2324   _Vcvv 2574   U_ciun 3685
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-pow 3955  ax-pr 3972  ax-un 4198
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938
This theorem is referenced by:  frecabex  6015
  Copyright terms: Public domain W3C validator