ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abrexexg Unicode version

Theorem abrexexg 5776
Description: Existence of a class abstraction of existentially restricted sets.  x is normally a free-variable parameter in  B. The antecedent assures us that  A is a set. (Contributed by NM, 3-Nov-2003.)
Assertion
Ref Expression
abrexexg  |-  ( A  e.  V  ->  { y  |  E. x  e.  A  y  =  B }  e.  _V )
Distinct variable groups:    x, y, A   
y, B
Allowed substitution hints:    B( x)    V( x, y)

Proof of Theorem abrexexg
StepHypRef Expression
1 eqid 2082 . . 3  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
21rnmpt 4610 . 2  |-  ran  (
x  e.  A  |->  B )  =  { y  |  E. x  e.  A  y  =  B }
3 mptexg 5418 . . 3  |-  ( A  e.  V  ->  (
x  e.  A  |->  B )  e.  _V )
4 rnexg 4625 . . 3  |-  ( ( x  e.  A  |->  B )  e.  _V  ->  ran  ( x  e.  A  |->  B )  e.  _V )
53, 4syl 14 . 2  |-  ( A  e.  V  ->  ran  ( x  e.  A  |->  B )  e.  _V )
62, 5syl5eqelr 2167 1  |-  ( A  e.  V  ->  { y  |  E. x  e.  A  y  =  B }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1285    e. wcel 1434   {cab 2068   E.wrex 2350   _Vcvv 2602    |-> cmpt 3847   ran crn 4372
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3901  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-un 4196
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940
This theorem is referenced by:  iunexg  5777  qsexg  6228  shftfvalg  9844
  Copyright terms: Public domain W3C validator