ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  add4i Unicode version

Theorem add4i 7239
Description: Rearrangement of 4 terms in a sum. (Contributed by NM, 9-May-1999.)
Hypotheses
Ref Expression
add.1  |-  A  e.  CC
add.2  |-  B  e.  CC
add.3  |-  C  e.  CC
add4.4  |-  D  e.  CC
Assertion
Ref Expression
add4i  |-  ( ( A  +  B )  +  ( C  +  D ) )  =  ( ( A  +  C )  +  ( B  +  D ) )

Proof of Theorem add4i
StepHypRef Expression
1 add.1 . 2  |-  A  e.  CC
2 add.2 . 2  |-  B  e.  CC
3 add.3 . 2  |-  C  e.  CC
4 add4.4 . 2  |-  D  e.  CC
5 add4 7235 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  B )  +  ( C  +  D ) )  =  ( ( A  +  C )  +  ( B  +  D ) ) )
61, 2, 3, 4, 5mp4an 411 1  |-  ( ( A  +  B )  +  ( C  +  D ) )  =  ( ( A  +  C )  +  ( B  +  D ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1259    e. wcel 1409  (class class class)co 5540   CCcc 6945    + caddc 6950
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-addcl 7038  ax-addcom 7042  ax-addass 7044
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-rex 2329  df-v 2576  df-un 2950  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-iota 4895  df-fv 4938  df-ov 5543
This theorem is referenced by:  add42i  7240  negdii  7358  numma  8470
  Copyright terms: Public domain W3C validator