ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addclpi Unicode version

Theorem addclpi 6579
Description: Closure of addition of positive integers. (Contributed by NM, 18-Oct-1995.)
Assertion
Ref Expression
addclpi  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  +N  B
)  e.  N. )

Proof of Theorem addclpi
StepHypRef Expression
1 addpiord 6568 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  +N  B
)  =  ( A  +o  B ) )
2 pinn 6561 . . 3  |-  ( A  e.  N.  ->  A  e.  om )
3 pinn 6561 . . . . 5  |-  ( B  e.  N.  ->  B  e.  om )
4 nnacl 6124 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  +o  B
)  e.  om )
53, 4sylan2 280 . . . 4  |-  ( ( A  e.  om  /\  B  e.  N. )  ->  ( A  +o  B
)  e.  om )
6 elni2 6566 . . . . 5  |-  ( B  e.  N.  <->  ( B  e.  om  /\  (/)  e.  B
) )
7 nnaordi 6147 . . . . . . . 8  |-  ( ( B  e.  om  /\  A  e.  om )  ->  ( (/)  e.  B  ->  ( A  +o  (/) )  e.  ( A  +o  B
) ) )
8 ne0i 3264 . . . . . . . 8  |-  ( ( A  +o  (/) )  e.  ( A  +o  B
)  ->  ( A  +o  B )  =/=  (/) )
97, 8syl6 33 . . . . . . 7  |-  ( ( B  e.  om  /\  A  e.  om )  ->  ( (/)  e.  B  ->  ( A  +o  B
)  =/=  (/) ) )
109expcom 114 . . . . . 6  |-  ( A  e.  om  ->  ( B  e.  om  ->  (
(/)  e.  B  ->  ( A  +o  B )  =/=  (/) ) ) )
1110imp32 253 . . . . 5  |-  ( ( A  e.  om  /\  ( B  e.  om  /\  (/)  e.  B ) )  ->  ( A  +o  B )  =/=  (/) )
126, 11sylan2b 281 . . . 4  |-  ( ( A  e.  om  /\  B  e.  N. )  ->  ( A  +o  B
)  =/=  (/) )
13 elni 6560 . . . 4  |-  ( ( A  +o  B )  e.  N.  <->  ( ( A  +o  B )  e. 
om  /\  ( A  +o  B )  =/=  (/) ) )
145, 12, 13sylanbrc 408 . . 3  |-  ( ( A  e.  om  /\  B  e.  N. )  ->  ( A  +o  B
)  e.  N. )
152, 14sylan 277 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  +o  B
)  e.  N. )
161, 15eqeltrd 2156 1  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  +N  B
)  e.  N. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    e. wcel 1434    =/= wne 2246   (/)c0 3258   omcom 4339  (class class class)co 5543    +o coa 6062   N.cnpi 6524    +N cpli 6525
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3901  ax-sep 3904  ax-nul 3912  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-iinf 4337
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-tr 3884  df-id 4056  df-iord 4129  df-on 4131  df-suc 4134  df-iom 4340  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-1st 5798  df-2nd 5799  df-recs 5954  df-irdg 6019  df-oadd 6069  df-ni 6556  df-pli 6557
This theorem is referenced by:  addasspig  6582  distrpig  6585  ltapig  6590  1lt2pi  6592  indpi  6594  addcmpblnq  6619  addpipqqslem  6621  addclnq  6627  addassnqg  6634  distrnqg  6639  ltanqg  6652  1lt2nq  6658  ltexnqq  6660  archnqq  6669  prarloclemarch2  6671  nqnq0a  6706  nntopi  7122
  Copyright terms: Public domain W3C validator