ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcmpblnq0 Unicode version

Theorem addcmpblnq0 7251
Description: Lemma showing compatibility of addition on nonnegative fractions. (Contributed by Jim Kingdon, 23-Nov-2019.)
Assertion
Ref Expression
addcmpblnq0  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( ( A  .o  D )  =  ( B  .o  C )  /\  ( F  .o  S )  =  ( G  .o  R
) )  ->  <. (
( A  .o  G
)  +o  ( B  .o  F ) ) ,  ( B  .o  G ) >. ~Q0 
<. ( ( C  .o  S )  +o  ( D  .o  R ) ) ,  ( D  .o  S ) >. )
)

Proof of Theorem addcmpblnq0
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nndi 6382 . . . . . . . 8  |-  ( ( x  e.  om  /\  y  e.  om  /\  z  e.  om )  ->  (
x  .o  ( y  +o  z ) )  =  ( ( x  .o  y )  +o  ( x  .o  z
) ) )
21adantl 275 . . . . . . 7  |-  ( ( ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  /\  ( x  e. 
om  /\  y  e.  om 
/\  z  e.  om ) )  ->  (
x  .o  ( y  +o  z ) )  =  ( ( x  .o  y )  +o  ( x  .o  z
) ) )
3 simplll 522 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  A  e.  om )
4 simprlr 527 . . . . . . . . 9  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  G  e.  N. )
5 pinn 7117 . . . . . . . . 9  |-  ( G  e.  N.  ->  G  e.  om )
64, 5syl 14 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  G  e.  om )
7 nnmcl 6377 . . . . . . . 8  |-  ( ( A  e.  om  /\  G  e.  om )  ->  ( A  .o  G
)  e.  om )
83, 6, 7syl2anc 408 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( A  .o  G )  e.  om )
9 simpllr 523 . . . . . . . . 9  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  B  e.  N. )
10 pinn 7117 . . . . . . . . 9  |-  ( B  e.  N.  ->  B  e.  om )
119, 10syl 14 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  B  e.  om )
12 simprll 526 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  F  e.  om )
13 nnmcl 6377 . . . . . . . 8  |-  ( ( B  e.  om  /\  F  e.  om )  ->  ( B  .o  F
)  e.  om )
1411, 12, 13syl2anc 408 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( B  .o  F )  e.  om )
15 simplrr 525 . . . . . . . . 9  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  D  e.  N. )
16 pinn 7117 . . . . . . . . 9  |-  ( D  e.  N.  ->  D  e.  om )
1715, 16syl 14 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  D  e.  om )
18 simprrr 529 . . . . . . . . 9  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  S  e.  N. )
19 pinn 7117 . . . . . . . . 9  |-  ( S  e.  N.  ->  S  e.  om )
2018, 19syl 14 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  S  e.  om )
21 nnmcl 6377 . . . . . . . 8  |-  ( ( D  e.  om  /\  S  e.  om )  ->  ( D  .o  S
)  e.  om )
2217, 20, 21syl2anc 408 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( D  .o  S )  e.  om )
23 nnacl 6376 . . . . . . . 8  |-  ( ( x  e.  om  /\  y  e.  om )  ->  ( x  +o  y
)  e.  om )
2423adantl 275 . . . . . . 7  |-  ( ( ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  /\  ( x  e. 
om  /\  y  e.  om ) )  ->  (
x  +o  y )  e.  om )
25 nnmcom 6385 . . . . . . . 8  |-  ( ( x  e.  om  /\  y  e.  om )  ->  ( x  .o  y
)  =  ( y  .o  x ) )
2625adantl 275 . . . . . . 7  |-  ( ( ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  /\  ( x  e. 
om  /\  y  e.  om ) )  ->  (
x  .o  y )  =  ( y  .o  x ) )
272, 8, 14, 22, 24, 26caovdir2d 5947 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( ( A  .o  G )  +o  ( B  .o  F ) )  .o  ( D  .o  S
) )  =  ( ( ( A  .o  G )  .o  ( D  .o  S ) )  +o  ( ( B  .o  F )  .o  ( D  .o  S
) ) ) )
28 nnmass 6383 . . . . . . . . 9  |-  ( ( x  e.  om  /\  y  e.  om  /\  z  e.  om )  ->  (
( x  .o  y
)  .o  z )  =  ( x  .o  ( y  .o  z
) ) )
2928adantl 275 . . . . . . . 8  |-  ( ( ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  /\  ( x  e. 
om  /\  y  e.  om 
/\  z  e.  om ) )  ->  (
( x  .o  y
)  .o  z )  =  ( x  .o  ( y  .o  z
) ) )
30 nnmcl 6377 . . . . . . . . 9  |-  ( ( x  e.  om  /\  y  e.  om )  ->  ( x  .o  y
)  e.  om )
3130adantl 275 . . . . . . . 8  |-  ( ( ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  /\  ( x  e. 
om  /\  y  e.  om ) )  ->  (
x  .o  y )  e.  om )
323, 6, 17, 26, 29, 20, 31caov4d 5955 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( A  .o  G )  .o  ( D  .o  S
) )  =  ( ( A  .o  D
)  .o  ( G  .o  S ) ) )
3311, 12, 17, 26, 29, 20, 31caov4d 5955 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( B  .o  F )  .o  ( D  .o  S
) )  =  ( ( B  .o  D
)  .o  ( F  .o  S ) ) )
3432, 33oveq12d 5792 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( ( A  .o  G )  .o  ( D  .o  S ) )  +o  ( ( B  .o  F )  .o  ( D  .o  S ) ) )  =  ( ( ( A  .o  D
)  .o  ( G  .o  S ) )  +o  ( ( B  .o  D )  .o  ( F  .o  S
) ) ) )
3527, 34eqtrd 2172 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( ( A  .o  G )  +o  ( B  .o  F ) )  .o  ( D  .o  S
) )  =  ( ( ( A  .o  D )  .o  ( G  .o  S ) )  +o  ( ( B  .o  D )  .o  ( F  .o  S
) ) ) )
36 oveq1 5781 . . . . . 6  |-  ( ( A  .o  D )  =  ( B  .o  C )  ->  (
( A  .o  D
)  .o  ( G  .o  S ) )  =  ( ( B  .o  C )  .o  ( G  .o  S
) ) )
37 oveq2 5782 . . . . . 6  |-  ( ( F  .o  S )  =  ( G  .o  R )  ->  (
( B  .o  D
)  .o  ( F  .o  S ) )  =  ( ( B  .o  D )  .o  ( G  .o  R
) ) )
3836, 37oveqan12d 5793 . . . . 5  |-  ( ( ( A  .o  D
)  =  ( B  .o  C )  /\  ( F  .o  S
)  =  ( G  .o  R ) )  ->  ( ( ( A  .o  D )  .o  ( G  .o  S ) )  +o  ( ( B  .o  D )  .o  ( F  .o  S ) ) )  =  ( ( ( B  .o  C
)  .o  ( G  .o  S ) )  +o  ( ( B  .o  D )  .o  ( G  .o  R
) ) ) )
3935, 38sylan9eq 2192 . . . 4  |-  ( ( ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  /\  ( ( A  .o  D )  =  ( B  .o  C
)  /\  ( F  .o  S )  =  ( G  .o  R ) ) )  ->  (
( ( A  .o  G )  +o  ( B  .o  F ) )  .o  ( D  .o  S ) )  =  ( ( ( B  .o  C )  .o  ( G  .o  S
) )  +o  (
( B  .o  D
)  .o  ( G  .o  R ) ) ) )
40 nnmcl 6377 . . . . . . . 8  |-  ( ( B  e.  om  /\  G  e.  om )  ->  ( B  .o  G
)  e.  om )
4111, 6, 40syl2anc 408 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( B  .o  G )  e.  om )
42 simplrl 524 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  C  e.  om )
43 nnmcl 6377 . . . . . . . 8  |-  ( ( C  e.  om  /\  S  e.  om )  ->  ( C  .o  S
)  e.  om )
4442, 20, 43syl2anc 408 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( C  .o  S )  e.  om )
45 simprrl 528 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  R  e.  om )
46 nnmcl 6377 . . . . . . . 8  |-  ( ( D  e.  om  /\  R  e.  om )  ->  ( D  .o  R
)  e.  om )
4717, 45, 46syl2anc 408 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( D  .o  R )  e.  om )
48 nndi 6382 . . . . . . 7  |-  ( ( ( B  .o  G
)  e.  om  /\  ( C  .o  S
)  e.  om  /\  ( D  .o  R
)  e.  om )  ->  ( ( B  .o  G )  .o  (
( C  .o  S
)  +o  ( D  .o  R ) ) )  =  ( ( ( B  .o  G
)  .o  ( C  .o  S ) )  +o  ( ( B  .o  G )  .o  ( D  .o  R
) ) ) )
4941, 44, 47, 48syl3anc 1216 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( B  .o  G )  .o  ( ( C  .o  S )  +o  ( D  .o  R ) ) )  =  ( ( ( B  .o  G
)  .o  ( C  .o  S ) )  +o  ( ( B  .o  G )  .o  ( D  .o  R
) ) ) )
5011, 6, 42, 26, 29, 20, 31caov4d 5955 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( B  .o  G )  .o  ( C  .o  S
) )  =  ( ( B  .o  C
)  .o  ( G  .o  S ) ) )
5111, 6, 17, 26, 29, 45, 31caov4d 5955 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( B  .o  G )  .o  ( D  .o  R
) )  =  ( ( B  .o  D
)  .o  ( G  .o  R ) ) )
5250, 51oveq12d 5792 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( ( B  .o  G )  .o  ( C  .o  S ) )  +o  ( ( B  .o  G )  .o  ( D  .o  R ) ) )  =  ( ( ( B  .o  C
)  .o  ( G  .o  S ) )  +o  ( ( B  .o  D )  .o  ( G  .o  R
) ) ) )
5349, 52eqtrd 2172 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( B  .o  G )  .o  ( ( C  .o  S )  +o  ( D  .o  R ) ) )  =  ( ( ( B  .o  C
)  .o  ( G  .o  S ) )  +o  ( ( B  .o  D )  .o  ( G  .o  R
) ) ) )
5453adantr 274 . . . 4  |-  ( ( ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  /\  ( ( A  .o  D )  =  ( B  .o  C
)  /\  ( F  .o  S )  =  ( G  .o  R ) ) )  ->  (
( B  .o  G
)  .o  ( ( C  .o  S )  +o  ( D  .o  R ) ) )  =  ( ( ( B  .o  C )  .o  ( G  .o  S ) )  +o  ( ( B  .o  D )  .o  ( G  .o  R ) ) ) )
5539, 54eqtr4d 2175 . . 3  |-  ( ( ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  /\  ( ( A  .o  D )  =  ( B  .o  C
)  /\  ( F  .o  S )  =  ( G  .o  R ) ) )  ->  (
( ( A  .o  G )  +o  ( B  .o  F ) )  .o  ( D  .o  S ) )  =  ( ( B  .o  G )  .o  (
( C  .o  S
)  +o  ( D  .o  R ) ) ) )
56 nnacl 6376 . . . . . 6  |-  ( ( ( A  .o  G
)  e.  om  /\  ( B  .o  F
)  e.  om )  ->  ( ( A  .o  G )  +o  ( B  .o  F ) )  e.  om )
578, 14, 56syl2anc 408 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( A  .o  G )  +o  ( B  .o  F
) )  e.  om )
58 mulpiord 7125 . . . . . . . 8  |-  ( ( B  e.  N.  /\  G  e.  N. )  ->  ( B  .N  G
)  =  ( B  .o  G ) )
59 mulclpi 7136 . . . . . . . 8  |-  ( ( B  e.  N.  /\  G  e.  N. )  ->  ( B  .N  G
)  e.  N. )
6058, 59eqeltrrd 2217 . . . . . . 7  |-  ( ( B  e.  N.  /\  G  e.  N. )  ->  ( B  .o  G
)  e.  N. )
6160ad2ant2l 499 . . . . . 6  |-  ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( F  e.  om  /\  G  e.  N. )
)  ->  ( B  .o  G )  e.  N. )
6261ad2ant2r 500 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( B  .o  G )  e.  N. )
63 nnacl 6376 . . . . . 6  |-  ( ( ( C  .o  S
)  e.  om  /\  ( D  .o  R
)  e.  om )  ->  ( ( C  .o  S )  +o  ( D  .o  R ) )  e.  om )
6444, 47, 63syl2anc 408 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( C  .o  S )  +o  ( D  .o  R
) )  e.  om )
65 mulpiord 7125 . . . . . . . 8  |-  ( ( D  e.  N.  /\  S  e.  N. )  ->  ( D  .N  S
)  =  ( D  .o  S ) )
66 mulclpi 7136 . . . . . . . 8  |-  ( ( D  e.  N.  /\  S  e.  N. )  ->  ( D  .N  S
)  e.  N. )
6765, 66eqeltrrd 2217 . . . . . . 7  |-  ( ( D  e.  N.  /\  S  e.  N. )  ->  ( D  .o  S
)  e.  N. )
6867ad2ant2l 499 . . . . . 6  |-  ( ( ( C  e.  om  /\  D  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. )
)  ->  ( D  .o  S )  e.  N. )
6968ad2ant2l 499 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( D  .o  S )  e.  N. )
70 enq0breq 7244 . . . . 5  |-  ( ( ( ( ( A  .o  G )  +o  ( B  .o  F
) )  e.  om  /\  ( B  .o  G
)  e.  N. )  /\  ( ( ( C  .o  S )  +o  ( D  .o  R
) )  e.  om  /\  ( D  .o  S
)  e.  N. )
)  ->  ( <. ( ( A  .o  G
)  +o  ( B  .o  F ) ) ,  ( B  .o  G ) >. ~Q0 
<. ( ( C  .o  S )  +o  ( D  .o  R ) ) ,  ( D  .o  S ) >.  <->  ( (
( A  .o  G
)  +o  ( B  .o  F ) )  .o  ( D  .o  S ) )  =  ( ( B  .o  G )  .o  (
( C  .o  S
)  +o  ( D  .o  R ) ) ) ) )
7157, 62, 64, 69, 70syl22anc 1217 . . . 4  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( <. (
( A  .o  G
)  +o  ( B  .o  F ) ) ,  ( B  .o  G ) >. ~Q0 
<. ( ( C  .o  S )  +o  ( D  .o  R ) ) ,  ( D  .o  S ) >.  <->  ( (
( A  .o  G
)  +o  ( B  .o  F ) )  .o  ( D  .o  S ) )  =  ( ( B  .o  G )  .o  (
( C  .o  S
)  +o  ( D  .o  R ) ) ) ) )
7271adantr 274 . . 3  |-  ( ( ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  /\  ( ( A  .o  D )  =  ( B  .o  C
)  /\  ( F  .o  S )  =  ( G  .o  R ) ) )  ->  ( <. ( ( A  .o  G )  +o  ( B  .o  F ) ) ,  ( B  .o  G ) >. ~Q0 
<. ( ( C  .o  S )  +o  ( D  .o  R ) ) ,  ( D  .o  S ) >.  <->  ( (
( A  .o  G
)  +o  ( B  .o  F ) )  .o  ( D  .o  S ) )  =  ( ( B  .o  G )  .o  (
( C  .o  S
)  +o  ( D  .o  R ) ) ) ) )
7355, 72mpbird 166 . 2  |-  ( ( ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  /\  ( ( A  .o  D )  =  ( B  .o  C
)  /\  ( F  .o  S )  =  ( G  .o  R ) ) )  ->  <. (
( A  .o  G
)  +o  ( B  .o  F ) ) ,  ( B  .o  G ) >. ~Q0 
<. ( ( C  .o  S )  +o  ( D  .o  R ) ) ,  ( D  .o  S ) >. )
7473ex 114 1  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( ( A  .o  D )  =  ( B  .o  C )  /\  ( F  .o  S )  =  ( G  .o  R
) )  ->  <. (
( A  .o  G
)  +o  ( B  .o  F ) ) ,  ( B  .o  G ) >. ~Q0 
<. ( ( C  .o  S )  +o  ( D  .o  R ) ) ,  ( D  .o  S ) >. )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   <.cop 3530   class class class wbr 3929   omcom 4504  (class class class)co 5774    +o coa 6310    .o comu 6311   N.cnpi 7080    .N cmi 7082   ~Q0 ceq0 7094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-oadd 6317  df-omul 6318  df-ni 7112  df-mi 7114  df-enq0 7232
This theorem is referenced by:  addnq0mo  7255
  Copyright terms: Public domain W3C validator