ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcmpblnr Unicode version

Theorem addcmpblnr 6978
Description: Lemma showing compatibility of addition. (Contributed by NM, 3-Sep-1995.)
Assertion
Ref Expression
addcmpblnr  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( ( A  +P.  D )  =  ( B  +P.  C )  /\  ( F  +P.  S )  =  ( G  +P.  R
) )  ->  <. ( A  +P.  F ) ,  ( B  +P.  G
) >.  ~R  <. ( C  +P.  R ) ,  ( D  +P.  S
) >. ) )

Proof of Theorem addcmpblnr
StepHypRef Expression
1 oveq12 5552 . 2  |-  ( ( ( A  +P.  D
)  =  ( B  +P.  C )  /\  ( F  +P.  S )  =  ( G  +P.  R ) )  ->  (
( A  +P.  D
)  +P.  ( F  +P.  S ) )  =  ( ( B  +P.  C )  +P.  ( G  +P.  R ) ) )
2 addclpr 6789 . . . . . . . 8  |-  ( ( A  e.  P.  /\  F  e.  P. )  ->  ( A  +P.  F
)  e.  P. )
3 addclpr 6789 . . . . . . . 8  |-  ( ( B  e.  P.  /\  G  e.  P. )  ->  ( B  +P.  G
)  e.  P. )
42, 3anim12i 331 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  F  e.  P. )  /\  ( B  e.  P.  /\  G  e.  P. )
)  ->  ( ( A  +P.  F )  e. 
P.  /\  ( B  +P.  G )  e.  P. ) )
54an4s 553 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( F  e.  P.  /\  G  e.  P. )
)  ->  ( ( A  +P.  F )  e. 
P.  /\  ( B  +P.  G )  e.  P. ) )
6 addclpr 6789 . . . . . . . 8  |-  ( ( C  e.  P.  /\  R  e.  P. )  ->  ( C  +P.  R
)  e.  P. )
7 addclpr 6789 . . . . . . . 8  |-  ( ( D  e.  P.  /\  S  e.  P. )  ->  ( D  +P.  S
)  e.  P. )
86, 7anim12i 331 . . . . . . 7  |-  ( ( ( C  e.  P.  /\  R  e.  P. )  /\  ( D  e.  P.  /\  S  e.  P. )
)  ->  ( ( C  +P.  R )  e. 
P.  /\  ( D  +P.  S )  e.  P. ) )
98an4s 553 . . . . . 6  |-  ( ( ( C  e.  P.  /\  D  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. )
)  ->  ( ( C  +P.  R )  e. 
P.  /\  ( D  +P.  S )  e.  P. ) )
105, 9anim12i 331 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( F  e.  P.  /\  G  e.  P. ) )  /\  ( ( C  e. 
P.  /\  D  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( ( A  +P.  F )  e.  P.  /\  ( B  +P.  G )  e. 
P. )  /\  (
( C  +P.  R
)  e.  P.  /\  ( D  +P.  S )  e.  P. ) ) )
1110an4s 553 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( ( A  +P.  F )  e.  P.  /\  ( B  +P.  G )  e. 
P. )  /\  (
( C  +P.  R
)  e.  P.  /\  ( D  +P.  S )  e.  P. ) ) )
12 enrbreq 6973 . . . 4  |-  ( ( ( ( A  +P.  F )  e.  P.  /\  ( B  +P.  G )  e.  P. )  /\  ( ( C  +P.  R )  e.  P.  /\  ( D  +P.  S )  e.  P. ) )  ->  ( <. ( A  +P.  F ) ,  ( B  +P.  G
) >.  ~R  <. ( C  +P.  R ) ,  ( D  +P.  S
) >. 
<->  ( ( A  +P.  F )  +P.  ( D  +P.  S ) )  =  ( ( B  +P.  G )  +P.  ( C  +P.  R
) ) ) )
1311, 12syl 14 . . 3  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( <. ( A  +P.  F ) ,  ( B  +P.  G
) >.  ~R  <. ( C  +P.  R ) ,  ( D  +P.  S
) >. 
<->  ( ( A  +P.  F )  +P.  ( D  +P.  S ) )  =  ( ( B  +P.  G )  +P.  ( C  +P.  R
) ) ) )
14 simprll 504 . . . . . . . . 9  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  F  e.  P. )
15 simplrr 503 . . . . . . . . 9  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  D  e.  P. )
16 addcomprg 6830 . . . . . . . . 9  |-  ( ( F  e.  P.  /\  D  e.  P. )  ->  ( F  +P.  D
)  =  ( D  +P.  F ) )
1714, 15, 16syl2anc 403 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( F  +P.  D )  =  ( D  +P.  F ) )
1817oveq1d 5558 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( F  +P.  D )  +P. 
S )  =  ( ( D  +P.  F
)  +P.  S )
)
19 simprrr 507 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  S  e.  P. )
20 addassprg 6831 . . . . . . . 8  |-  ( ( F  e.  P.  /\  D  e.  P.  /\  S  e.  P. )  ->  (
( F  +P.  D
)  +P.  S )  =  ( F  +P.  ( D  +P.  S ) ) )
2114, 15, 19, 20syl3anc 1170 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( F  +P.  D )  +P. 
S )  =  ( F  +P.  ( D  +P.  S ) ) )
22 addassprg 6831 . . . . . . . 8  |-  ( ( D  e.  P.  /\  F  e.  P.  /\  S  e.  P. )  ->  (
( D  +P.  F
)  +P.  S )  =  ( D  +P.  ( F  +P.  S ) ) )
2315, 14, 19, 22syl3anc 1170 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( D  +P.  F )  +P. 
S )  =  ( D  +P.  ( F  +P.  S ) ) )
2418, 21, 233eqtr3d 2122 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( F  +P.  ( D  +P.  S ) )  =  ( D  +P.  ( F  +P.  S ) ) )
2524oveq2d 5559 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( A  +P.  ( F  +P.  ( D  +P.  S ) ) )  =  ( A  +P.  ( D  +P.  ( F  +P.  S ) ) ) )
26 simplll 500 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  A  e.  P. )
2715, 19, 7syl2anc 403 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( D  +P.  S )  e.  P. )
28 addassprg 6831 . . . . . 6  |-  ( ( A  e.  P.  /\  F  e.  P.  /\  ( D  +P.  S )  e. 
P. )  ->  (
( A  +P.  F
)  +P.  ( D  +P.  S ) )  =  ( A  +P.  ( F  +P.  ( D  +P.  S ) ) ) )
2926, 14, 27, 28syl3anc 1170 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( A  +P.  F )  +P.  ( D  +P.  S
) )  =  ( A  +P.  ( F  +P.  ( D  +P.  S ) ) ) )
30 addclpr 6789 . . . . . . 7  |-  ( ( F  e.  P.  /\  S  e.  P. )  ->  ( F  +P.  S
)  e.  P. )
3114, 19, 30syl2anc 403 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( F  +P.  S )  e.  P. )
32 addassprg 6831 . . . . . 6  |-  ( ( A  e.  P.  /\  D  e.  P.  /\  ( F  +P.  S )  e. 
P. )  ->  (
( A  +P.  D
)  +P.  ( F  +P.  S ) )  =  ( A  +P.  ( D  +P.  ( F  +P.  S ) ) ) )
3326, 15, 31, 32syl3anc 1170 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( A  +P.  D )  +P.  ( F  +P.  S
) )  =  ( A  +P.  ( D  +P.  ( F  +P.  S ) ) ) )
3425, 29, 333eqtr4d 2124 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( A  +P.  F )  +P.  ( D  +P.  S
) )  =  ( ( A  +P.  D
)  +P.  ( F  +P.  S ) ) )
35 simprlr 505 . . . . . . . . 9  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  G  e.  P. )
36 simplrl 502 . . . . . . . . 9  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  C  e.  P. )
37 addcomprg 6830 . . . . . . . . 9  |-  ( ( G  e.  P.  /\  C  e.  P. )  ->  ( G  +P.  C
)  =  ( C  +P.  G ) )
3835, 36, 37syl2anc 403 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( G  +P.  C )  =  ( C  +P.  G ) )
3938oveq1d 5558 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( G  +P.  C )  +P. 
R )  =  ( ( C  +P.  G
)  +P.  R )
)
40 simprrl 506 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  R  e.  P. )
41 addassprg 6831 . . . . . . . 8  |-  ( ( G  e.  P.  /\  C  e.  P.  /\  R  e.  P. )  ->  (
( G  +P.  C
)  +P.  R )  =  ( G  +P.  ( C  +P.  R ) ) )
4235, 36, 40, 41syl3anc 1170 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( G  +P.  C )  +P. 
R )  =  ( G  +P.  ( C  +P.  R ) ) )
43 addassprg 6831 . . . . . . . 8  |-  ( ( C  e.  P.  /\  G  e.  P.  /\  R  e.  P. )  ->  (
( C  +P.  G
)  +P.  R )  =  ( C  +P.  ( G  +P.  R ) ) )
4436, 35, 40, 43syl3anc 1170 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( C  +P.  G )  +P. 
R )  =  ( C  +P.  ( G  +P.  R ) ) )
4539, 42, 443eqtr3d 2122 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( G  +P.  ( C  +P.  R ) )  =  ( C  +P.  ( G  +P.  R ) ) )
4645oveq2d 5559 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( B  +P.  ( G  +P.  ( C  +P.  R ) ) )  =  ( B  +P.  ( C  +P.  ( G  +P.  R ) ) ) )
47 simpllr 501 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  B  e.  P. )
4836, 40, 6syl2anc 403 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( C  +P.  R )  e.  P. )
49 addassprg 6831 . . . . . 6  |-  ( ( B  e.  P.  /\  G  e.  P.  /\  ( C  +P.  R )  e. 
P. )  ->  (
( B  +P.  G
)  +P.  ( C  +P.  R ) )  =  ( B  +P.  ( G  +P.  ( C  +P.  R ) ) ) )
5047, 35, 48, 49syl3anc 1170 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( B  +P.  G )  +P.  ( C  +P.  R
) )  =  ( B  +P.  ( G  +P.  ( C  +P.  R ) ) ) )
51 addclpr 6789 . . . . . . 7  |-  ( ( G  e.  P.  /\  R  e.  P. )  ->  ( G  +P.  R
)  e.  P. )
5235, 40, 51syl2anc 403 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( G  +P.  R )  e.  P. )
53 addassprg 6831 . . . . . 6  |-  ( ( B  e.  P.  /\  C  e.  P.  /\  ( G  +P.  R )  e. 
P. )  ->  (
( B  +P.  C
)  +P.  ( G  +P.  R ) )  =  ( B  +P.  ( C  +P.  ( G  +P.  R ) ) ) )
5447, 36, 52, 53syl3anc 1170 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( B  +P.  C )  +P.  ( G  +P.  R
) )  =  ( B  +P.  ( C  +P.  ( G  +P.  R ) ) ) )
5546, 50, 543eqtr4d 2124 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( B  +P.  G )  +P.  ( C  +P.  R
) )  =  ( ( B  +P.  C
)  +P.  ( G  +P.  R ) ) )
5634, 55eqeq12d 2096 . . 3  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( ( A  +P.  F )  +P.  ( D  +P.  S ) )  =  ( ( B  +P.  G
)  +P.  ( C  +P.  R ) )  <->  ( ( A  +P.  D )  +P.  ( F  +P.  S
) )  =  ( ( B  +P.  C
)  +P.  ( G  +P.  R ) ) ) )
5713, 56bitrd 186 . 2  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( <. ( A  +P.  F ) ,  ( B  +P.  G
) >.  ~R  <. ( C  +P.  R ) ,  ( D  +P.  S
) >. 
<->  ( ( A  +P.  D )  +P.  ( F  +P.  S ) )  =  ( ( B  +P.  C )  +P.  ( G  +P.  R
) ) ) )
581, 57syl5ibr 154 1  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( ( A  +P.  D )  =  ( B  +P.  C )  /\  ( F  +P.  S )  =  ( G  +P.  R
) )  ->  <. ( A  +P.  F ) ,  ( B  +P.  G
) >.  ~R  <. ( C  +P.  R ) ,  ( D  +P.  S
) >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1285    e. wcel 1434   <.cop 3409   class class class wbr 3793  (class class class)co 5543   P.cnp 6543    +P. cpp 6545    ~R cer 6548
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3901  ax-sep 3904  ax-nul 3912  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-iinf 4337
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-tr 3884  df-eprel 4052  df-id 4056  df-po 4059  df-iso 4060  df-iord 4129  df-on 4131  df-suc 4134  df-iom 4340  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-1st 5798  df-2nd 5799  df-recs 5954  df-irdg 6019  df-1o 6065  df-2o 6066  df-oadd 6069  df-omul 6070  df-er 6172  df-ec 6174  df-qs 6178  df-ni 6556  df-pli 6557  df-mi 6558  df-lti 6559  df-plpq 6596  df-mpq 6597  df-enq 6599  df-nqqs 6600  df-plqqs 6601  df-mqqs 6602  df-1nqqs 6603  df-rq 6604  df-ltnqqs 6605  df-enq0 6676  df-nq0 6677  df-0nq0 6678  df-plq0 6679  df-mq0 6680  df-inp 6718  df-iplp 6720  df-enr 6965
This theorem is referenced by:  addsrmo  6982
  Copyright terms: Public domain W3C validator