ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  adddii Unicode version

Theorem adddii 7095
Description: Distributive law (left-distributivity). (Contributed by NM, 23-Nov-1994.)
Hypotheses
Ref Expression
axi.1  |-  A  e.  CC
axi.2  |-  B  e.  CC
axi.3  |-  C  e.  CC
Assertion
Ref Expression
adddii  |-  ( A  x.  ( B  +  C ) )  =  ( ( A  x.  B )  +  ( A  x.  C ) )

Proof of Theorem adddii
StepHypRef Expression
1 axi.1 . 2  |-  A  e.  CC
2 axi.2 . 2  |-  B  e.  CC
3 axi.3 . 2  |-  C  e.  CC
4 adddi 7071 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  +  C ) )  =  ( ( A  x.  B )  +  ( A  x.  C ) ) )
51, 2, 3, 4mp3an 1243 1  |-  ( A  x.  ( B  +  C ) )  =  ( ( A  x.  B )  +  ( A  x.  C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1259    e. wcel 1409  (class class class)co 5540   CCcc 6945    + caddc 6950    x. cmul 6952
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-distr 7046
This theorem depends on definitions:  df-bi 114  df-3an 898
This theorem is referenced by:  3t3e9  8140  numltc  8452  numsucc  8466  numma  8470  decmul10add  8495  4t3lem  8523  9t11e99  8556  decbin2  8567  binom2i  9527  3dec  9586  3dvds2dec  10177
  Copyright terms: Public domain W3C validator