ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addgt0 Unicode version

Theorem addgt0 7655
Description: The sum of 2 positive numbers is positive. (Contributed by NM, 1-Jun-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
addgt0  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  B ) )  ->  0  <  ( A  +  B
) )

Proof of Theorem addgt0
StepHypRef Expression
1 00id 7352 . 2  |-  ( 0  +  0 )  =  0
2 0re 7217 . . . 4  |-  0  e.  RR
3 lt2add 7652 . . . 4  |-  ( ( ( 0  e.  RR  /\  0  e.  RR )  /\  ( A  e.  RR  /\  B  e.  RR ) )  -> 
( ( 0  < 
A  /\  0  <  B )  ->  ( 0  +  0 )  < 
( A  +  B
) ) )
42, 2, 3mpanl12 427 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  < 
A  /\  0  <  B )  ->  ( 0  +  0 )  < 
( A  +  B
) ) )
54imp 122 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  B ) )  ->  (
0  +  0 )  <  ( A  +  B ) )
61, 5syl5eqbrr 3840 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  B ) )  ->  0  <  ( A  +  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    e. wcel 1434   class class class wbr 3806  (class class class)co 5564   RRcr 7078   0cc0 7079    + caddc 7082    < clt 7251
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3917  ax-pow 3969  ax-pr 3993  ax-un 4217  ax-setind 4309  ax-cnex 7165  ax-resscn 7166  ax-1cn 7167  ax-1re 7168  ax-icn 7169  ax-addcl 7170  ax-addrcl 7171  ax-mulcl 7172  ax-addcom 7174  ax-addass 7176  ax-i2m1 7179  ax-0id 7182  ax-rnegex 7183  ax-pre-lttrn 7188  ax-pre-ltadd 7190
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-rab 2362  df-v 2612  df-dif 2985  df-un 2987  df-in 2989  df-ss 2996  df-pw 3403  df-sn 3423  df-pr 3424  df-op 3426  df-uni 3623  df-br 3807  df-opab 3861  df-xp 4398  df-iota 4918  df-fv 4961  df-ov 5567  df-pnf 7253  df-mnf 7254  df-ltxr 7256
This theorem is referenced by:  addgt0i  7692  rpaddcl  8874
  Copyright terms: Public domain W3C validator