![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addgt0ii | Unicode version |
Description: Addition of 2 positive numbers is positive. (Contributed by NM, 18-May-1999.) |
Ref | Expression |
---|---|
lt2.1 |
![]() ![]() ![]() ![]() |
lt2.2 |
![]() ![]() ![]() ![]() |
addgt0i.3 |
![]() ![]() ![]() ![]() |
addgt0i.4 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
addgt0ii |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addgt0i.3 |
. 2
![]() ![]() ![]() ![]() | |
2 | addgt0i.4 |
. 2
![]() ![]() ![]() ![]() | |
3 | lt2.1 |
. . 3
![]() ![]() ![]() ![]() | |
4 | lt2.2 |
. . 3
![]() ![]() ![]() ![]() | |
5 | 3, 4 | addgt0i 7726 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 1, 2, 5 | mp2an 417 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3916 ax-pow 3968 ax-pr 3992 ax-un 4216 ax-setind 4308 ax-cnex 7199 ax-resscn 7200 ax-1cn 7201 ax-1re 7202 ax-icn 7203 ax-addcl 7204 ax-addrcl 7205 ax-mulcl 7206 ax-addcom 7208 ax-addass 7210 ax-i2m1 7213 ax-0id 7216 ax-rnegex 7217 ax-pre-lttrn 7222 ax-pre-ltadd 7224 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-rab 2362 df-v 2612 df-dif 2984 df-un 2986 df-in 2988 df-ss 2995 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-uni 3622 df-br 3806 df-opab 3860 df-xp 4397 df-iota 4917 df-fv 4960 df-ov 5567 df-pnf 7287 df-mnf 7288 df-ltxr 7290 |
This theorem is referenced by: eqneg 7957 2pos 8267 3pos 8270 4pos 8273 5pos 8276 6pos 8277 7pos 8278 8pos 8279 9pos 8280 |
Copyright terms: Public domain | W3C validator |