ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addid1 Unicode version

Theorem addid1 7365
Description:  0 is an additive identity. (Contributed by Jim Kingdon, 16-Jan-2020.)
Assertion
Ref Expression
addid1  |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )

Proof of Theorem addid1
StepHypRef Expression
1 ax-0id 7198 1  |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1285    e. wcel 1434  (class class class)co 5563   CCcc 7093   0cc0 7095    + caddc 7098
This theorem was proved from axioms:  ax-0id 7198
This theorem is referenced by:  addid2  7366  00id  7368  addid1i  7369  addid1d  7376  addcan2  7408  subid  7446  subid1  7447  addid0  7596  shftval3  9916  reim0  9949  fisumcvg  10401
  Copyright terms: Public domain W3C validator