![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addid2i | Unicode version |
Description: ![]() |
Ref | Expression |
---|---|
mul.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
addid2i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | addid2 7303 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 7 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-4 1441 ax-17 1460 ax-ial 1468 ax-ext 2064 ax-1cn 7120 ax-icn 7122 ax-addcl 7123 ax-mulcl 7125 ax-addcom 7127 ax-i2m1 7132 ax-0id 7135 |
This theorem depends on definitions: df-bi 115 df-cleq 2075 df-clel 2078 |
This theorem is referenced by: ine0 7554 inelr 7740 muleqadd 7814 0p1e1 8209 iap0 8310 num0h 8558 nummul1c 8595 decrmac 8604 decmul1 8610 fz0tp 9201 fzo0to3tp 9294 rei 9913 imi 9914 resqrexlemover 10023 ex-fac 10701 |
Copyright terms: Public domain | W3C validator |