ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnq0mo Unicode version

Theorem addnq0mo 6699
Description: There is at most one result from adding non-negative fractions. (Contributed by Jim Kingdon, 23-Nov-2019.)
Assertion
Ref Expression
addnq0mo  |-  ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  ->  E* z E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  ) )
Distinct variable groups:    t, A, u, v, w, z    t, B, u, v, w, z

Proof of Theorem addnq0mo
Dummy variables  f  g  h  q  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enq0er 6687 . . . . . . . . . . . . . 14  |- ~Q0  Er  ( om  X.  N. )
21a1i 9 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  ) ) )  -> ~Q0  Er  ( om  X.  N. ) )
3 nnnq0lem1 6698 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  ) ) )  ->  (
( ( ( w  e.  om  /\  v  e.  N. )  /\  (
s  e.  om  /\  f  e.  N. )
)  /\  ( (
u  e.  om  /\  t  e.  N. )  /\  ( g  e.  om  /\  h  e.  N. )
) )  /\  (
( w  .o  f
)  =  ( v  .o  s )  /\  ( u  .o  h
)  =  ( t  .o  g ) ) ) )
4 addcmpblnq0 6695 . . . . . . . . . . . . . . 15  |-  ( ( ( ( w  e. 
om  /\  v  e.  N. )  /\  (
s  e.  om  /\  f  e.  N. )
)  /\  ( (
u  e.  om  /\  t  e.  N. )  /\  ( g  e.  om  /\  h  e.  N. )
) )  ->  (
( ( w  .o  f )  =  ( v  .o  s )  /\  ( u  .o  h )  =  ( t  .o  g ) )  ->  <. ( ( w  .o  t )  +o  ( v  .o  u ) ) ,  ( v  .o  t
) >. ~Q0  <.
( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >.
) )
54imp 122 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( w  e.  om  /\  v  e.  N. )  /\  (
s  e.  om  /\  f  e.  N. )
)  /\  ( (
u  e.  om  /\  t  e.  N. )  /\  ( g  e.  om  /\  h  e.  N. )
) )  /\  (
( w  .o  f
)  =  ( v  .o  s )  /\  ( u  .o  h
)  =  ( t  .o  g ) ) )  ->  <. ( ( w  .o  t )  +o  ( v  .o  u ) ) ,  ( v  .o  t
) >. ~Q0  <.
( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >.
)
63, 5syl 14 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  ) ) )  ->  <. (
( w  .o  t
)  +o  ( v  .o  u ) ) ,  ( v  .o  t ) >. ~Q0 
<. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >.
)
72, 6erthi 6218 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  ) ) )  ->  [ <. ( ( w  .o  t
)  +o  ( v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  =  [ <. (
( s  .o  h
)  +o  ( f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  )
8 simprlr 505 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  ) ) )  ->  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  )
9 simprrr 507 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  ) ) )  ->  q  =  [ <. ( ( s  .o  h )  +o  ( f  .o  g
) ) ,  ( f  .o  h )
>. ] ~Q0  )
107, 8, 93eqtr4d 2124 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  ) ) )  ->  z  =  q )
1110expr 367 . . . . . . . . . 10  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  ) )  ->  (
( ( A  =  [ <. s ,  f
>. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  )  ->  z  =  q ) )
1211exlimdvv 1819 . . . . . . . . 9  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  ) )  ->  ( E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  ( f  .o  g
) ) ,  ( f  .o  h )
>. ] ~Q0  )  ->  z  =  q ) )
1312exlimdvv 1819 . . . . . . . 8  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  ) )  ->  ( E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  ( f  .o  g
) ) ,  ( f  .o  h )
>. ] ~Q0  )  ->  z  =  q ) )
1413ex 113 . . . . . . 7  |-  ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  ->  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  ->  ( E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  )  ->  z  =  q ) ) )
1514exlimdvv 1819 . . . . . 6  |-  ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  ->  ( E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  )  ->  ( E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  )  ->  z  =  q ) ) )
1615exlimdvv 1819 . . . . 5  |-  ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  ->  ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  )  ->  ( E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  )  ->  z  =  q ) ) )
1716impd 251 . . . 4  |-  ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  ->  (
( E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  /\  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  ) )  ->  z  =  q ) )
1817alrimivv 1797 . . 3  |-  ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  ->  A. z A. q ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  )  /\  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  ) )  ->  z  =  q ) )
19 opeq12 3580 . . . . . . . . . . 11  |-  ( ( w  =  s  /\  v  =  f )  -> 
<. w ,  v >.  =  <. s ,  f
>. )
2019eceq1d 6208 . . . . . . . . . 10  |-  ( ( w  =  s  /\  v  =  f )  ->  [ <. w ,  v
>. ] ~Q0  =  [ <. s ,  f
>. ] ~Q0  )
2120eqeq2d 2093 . . . . . . . . 9  |-  ( ( w  =  s  /\  v  =  f )  ->  ( A  =  [ <. w ,  v >. ] ~Q0  <->  A  =  [ <. s ,  f
>. ] ~Q0  ) )
2221anbi1d 453 . . . . . . . 8  |-  ( ( w  =  s  /\  v  =  f )  ->  ( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  <-> 
( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  ) ) )
23 simpl 107 . . . . . . . . . . . . 13  |-  ( ( w  =  s  /\  v  =  f )  ->  w  =  s )
2423oveq1d 5558 . . . . . . . . . . . 12  |-  ( ( w  =  s  /\  v  =  f )  ->  ( w  .o  t
)  =  ( s  .o  t ) )
25 simpr 108 . . . . . . . . . . . . 13  |-  ( ( w  =  s  /\  v  =  f )  ->  v  =  f )
2625oveq1d 5558 . . . . . . . . . . . 12  |-  ( ( w  =  s  /\  v  =  f )  ->  ( v  .o  u
)  =  ( f  .o  u ) )
2724, 26oveq12d 5561 . . . . . . . . . . 11  |-  ( ( w  =  s  /\  v  =  f )  ->  ( ( w  .o  t )  +o  (
v  .o  u ) )  =  ( ( s  .o  t )  +o  ( f  .o  u ) ) )
2825oveq1d 5558 . . . . . . . . . . 11  |-  ( ( w  =  s  /\  v  =  f )  ->  ( v  .o  t
)  =  ( f  .o  t ) )
2927, 28opeq12d 3586 . . . . . . . . . 10  |-  ( ( w  =  s  /\  v  =  f )  -> 
<. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >.  =  <. ( ( s  .o  t )  +o  ( f  .o  u
) ) ,  ( f  .o  t )
>. )
3029eceq1d 6208 . . . . . . . . 9  |-  ( ( w  =  s  /\  v  =  f )  ->  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  =  [ <. ( ( s  .o  t )  +o  ( f  .o  u
) ) ,  ( f  .o  t )
>. ] ~Q0  )
3130eqeq2d 2093 . . . . . . . 8  |-  ( ( w  =  s  /\  v  =  f )  ->  ( q  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  <->  q  =  [ <. ( ( s  .o  t )  +o  ( f  .o  u
) ) ,  ( f  .o  t )
>. ] ~Q0  ) )
3222, 31anbi12d 457 . . . . . . 7  |-  ( ( w  =  s  /\  v  =  f )  ->  ( ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  <-> 
( ( A  =  [ <. s ,  f
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  t )  +o  (
f  .o  u ) ) ,  ( f  .o  t ) >. ] ~Q0  ) ) )
33 opeq12 3580 . . . . . . . . . . 11  |-  ( ( u  =  g  /\  t  =  h )  -> 
<. u ,  t >.  =  <. g ,  h >. )
3433eceq1d 6208 . . . . . . . . . 10  |-  ( ( u  =  g  /\  t  =  h )  ->  [ <. u ,  t
>. ] ~Q0  =  [ <. g ,  h >. ] ~Q0  )
3534eqeq2d 2093 . . . . . . . . 9  |-  ( ( u  =  g  /\  t  =  h )  ->  ( B  =  [ <. u ,  t >. ] ~Q0  <->  B  =  [ <. g ,  h >. ] ~Q0  ) )
3635anbi2d 452 . . . . . . . 8  |-  ( ( u  =  g  /\  t  =  h )  ->  ( ( A  =  [ <. s ,  f
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  <-> 
( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  ) ) )
37 simpr 108 . . . . . . . . . . . . 13  |-  ( ( u  =  g  /\  t  =  h )  ->  t  =  h )
3837oveq2d 5559 . . . . . . . . . . . 12  |-  ( ( u  =  g  /\  t  =  h )  ->  ( s  .o  t
)  =  ( s  .o  h ) )
39 simpl 107 . . . . . . . . . . . . 13  |-  ( ( u  =  g  /\  t  =  h )  ->  u  =  g )
4039oveq2d 5559 . . . . . . . . . . . 12  |-  ( ( u  =  g  /\  t  =  h )  ->  ( f  .o  u
)  =  ( f  .o  g ) )
4138, 40oveq12d 5561 . . . . . . . . . . 11  |-  ( ( u  =  g  /\  t  =  h )  ->  ( ( s  .o  t )  +o  (
f  .o  u ) )  =  ( ( s  .o  h )  +o  ( f  .o  g ) ) )
4237oveq2d 5559 . . . . . . . . . . 11  |-  ( ( u  =  g  /\  t  =  h )  ->  ( f  .o  t
)  =  ( f  .o  h ) )
4341, 42opeq12d 3586 . . . . . . . . . 10  |-  ( ( u  =  g  /\  t  =  h )  -> 
<. ( ( s  .o  t )  +o  (
f  .o  u ) ) ,  ( f  .o  t ) >.  =  <. ( ( s  .o  h )  +o  ( f  .o  g
) ) ,  ( f  .o  h )
>. )
4443eceq1d 6208 . . . . . . . . 9  |-  ( ( u  =  g  /\  t  =  h )  ->  [ <. ( ( s  .o  t )  +o  ( f  .o  u
) ) ,  ( f  .o  t )
>. ] ~Q0  =  [ <. ( ( s  .o  h )  +o  ( f  .o  g
) ) ,  ( f  .o  h )
>. ] ~Q0  )
4544eqeq2d 2093 . . . . . . . 8  |-  ( ( u  =  g  /\  t  =  h )  ->  ( q  =  [ <. ( ( s  .o  t )  +o  (
f  .o  u ) ) ,  ( f  .o  t ) >. ] ~Q0  <->  q  =  [ <. ( ( s  .o  h )  +o  ( f  .o  g
) ) ,  ( f  .o  h )
>. ] ~Q0  ) )
4636, 45anbi12d 457 . . . . . . 7  |-  ( ( u  =  g  /\  t  =  h )  ->  ( ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  t )  +o  (
f  .o  u ) ) ,  ( f  .o  t ) >. ] ~Q0  )  <-> 
( ( A  =  [ <. s ,  f
>. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  ) ) )
4732, 46cbvex4v 1847 . . . . . 6  |-  ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  ) 
<->  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  ( f  .o  g
) ) ,  ( f  .o  h )
>. ] ~Q0  ) )
4847anbi2i 445 . . . . 5  |-  ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  )  /\  E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  ) )  <->  ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  /\  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  ) ) )
4948imbi1i 236 . . . 4  |-  ( ( ( E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  /\  E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  ) )  ->  z  =  q )  <->  ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  )  /\  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  ) )  ->  z  =  q ) )
50492albii 1401 . . 3  |-  ( A. z A. q ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  )  /\  E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  ) )  ->  z  =  q )  <->  A. z A. q ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  )  /\  E. s E. f E. g E. h ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ <. ( ( s  .o  h )  +o  (
f  .o  g ) ) ,  ( f  .o  h ) >. ] ~Q0  ) )  ->  z  =  q ) )
5118, 50sylibr 132 . 2  |-  ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  ->  A. z A. q ( ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  )  /\  E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  ) )  ->  z  =  q ) )
52 eqeq1 2088 . . . . 5  |-  ( z  =  q  ->  (
z  =  [ <. ( ( w  .o  t
)  +o  ( v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  <-> 
q  =  [ <. ( ( w  .o  t
)  +o  ( v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  ) )
5352anbi2d 452 . . . 4  |-  ( z  =  q  ->  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  <-> 
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  ) ) )
54534exbidv 1792 . . 3  |-  ( z  =  q  ->  ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  ) 
<->  E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  ) ) )
5554mo4 2003 . 2  |-  ( E* z E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  <->  A. z A. q ( ( E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  /\  E. w E. v E. u E. t
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  q  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  ) )  ->  z  =  q ) )
5651, 55sylibr 132 1  |-  ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  ->  E* z E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102   A.wal 1283    = wceq 1285   E.wex 1422    e. wcel 1434   E*wmo 1943   <.cop 3409   class class class wbr 3793   omcom 4339    X. cxp 4369  (class class class)co 5543    +o coa 6062    .o comu 6063    Er wer 6169   [cec 6170   /.cqs 6171   N.cnpi 6524   ~Q0 ceq0 6538
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3901  ax-sep 3904  ax-nul 3912  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-iinf 4337
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-tr 3884  df-id 4056  df-iord 4129  df-on 4131  df-suc 4134  df-iom 4340  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-1st 5798  df-2nd 5799  df-recs 5954  df-irdg 6019  df-oadd 6069  df-omul 6070  df-er 6172  df-ec 6174  df-qs 6178  df-ni 6556  df-mi 6558  df-enq0 6676
This theorem is referenced by:  addnnnq0  6701
  Copyright terms: Public domain W3C validator