ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnqprlemrl Unicode version

Theorem addnqprlemrl 7365
Description: Lemma for addnqpr 7369. The reverse subset relationship for the lower cut. (Contributed by Jim Kingdon, 19-Aug-2020.)
Assertion
Ref Expression
addnqprlemrl  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  C_  ( 1st ` 
<. { l  |  l 
<Q  ( A  +Q  B
) } ,  {
u  |  ( A  +Q  B )  <Q  u } >. ) )
Distinct variable groups:    A, l, u    B, l, u

Proof of Theorem addnqprlemrl
Dummy variables  f  g  h  r  s  t  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqprlu 7355 . . . . . 6  |-  ( A  e.  Q.  ->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  e.  P. )
2 nqprlu 7355 . . . . . 6  |-  ( B  e.  Q.  ->  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >.  e.  P. )
3 df-iplp 7276 . . . . . . 7  |-  +P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  x )  /\  h  e.  ( 1st `  y
)  /\  f  =  ( g  +Q  h
) ) } ,  { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  x )  /\  h  e.  ( 2nd `  y
)  /\  f  =  ( g  +Q  h
) ) } >. )
4 addclnq 7183 . . . . . . 7  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  +Q  h
)  e.  Q. )
53, 4genpelvl 7320 . . . . . 6  |-  ( (
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  e.  P.  /\ 
<. { l  |  l 
<Q  B } ,  {
u  |  B  <Q  u } >.  e.  P. )  ->  ( r  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  <->  E. s  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. ) E. t  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
r  =  ( s  +Q  t ) ) )
61, 2, 5syl2an 287 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( r  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  <->  E. s  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. ) E. t  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
r  =  ( s  +Q  t ) ) )
76biimpa 294 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 1st `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )  ->  E. s  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. ) E. t  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
r  =  ( s  +Q  t ) )
8 vex 2689 . . . . . . . . . . . . 13  |-  s  e. 
_V
9 breq1 3932 . . . . . . . . . . . . 13  |-  ( l  =  s  ->  (
l  <Q  A  <->  s  <Q  A ) )
10 ltnqex 7357 . . . . . . . . . . . . . 14  |-  { l  |  l  <Q  A }  e.  _V
11 gtnqex 7358 . . . . . . . . . . . . . 14  |-  { u  |  A  <Q  u }  e.  _V
1210, 11op1st 6044 . . . . . . . . . . . . 13  |-  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  =  { l  |  l 
<Q  A }
138, 9, 12elab2 2832 . . . . . . . . . . . 12  |-  ( s  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  <->  s  <Q  A )
1413biimpi 119 . . . . . . . . . . 11  |-  ( s  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  ->  s  <Q  A )
1514ad2antrl 481 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  Q. )  /\  r  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  ->  s  <Q  A )
1615adantr 274 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
s  <Q  A )
17 vex 2689 . . . . . . . . . . . . 13  |-  t  e. 
_V
18 breq1 3932 . . . . . . . . . . . . 13  |-  ( l  =  t  ->  (
l  <Q  B  <->  t  <Q  B ) )
19 ltnqex 7357 . . . . . . . . . . . . . 14  |-  { l  |  l  <Q  B }  e.  _V
20 gtnqex 7358 . . . . . . . . . . . . . 14  |-  { u  |  B  <Q  u }  e.  _V
2119, 20op1st 6044 . . . . . . . . . . . . 13  |-  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )  =  { l  |  l 
<Q  B }
2217, 18, 21elab2 2832 . . . . . . . . . . . 12  |-  ( t  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )  <->  t  <Q  B )
2322biimpi 119 . . . . . . . . . . 11  |-  ( t  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )  ->  t  <Q  B )
2423ad2antll 482 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  Q. )  /\  r  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  ->  t  <Q  B )
2524adantr 274 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
t  <Q  B )
26 ltrelnq 7173 . . . . . . . . . . . 12  |-  <Q  C_  ( Q.  X.  Q. )
2726brel 4591 . . . . . . . . . . 11  |-  ( s 
<Q  A  ->  ( s  e.  Q.  /\  A  e.  Q. ) )
2816, 27syl 14 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
( s  e.  Q.  /\  A  e.  Q. )
)
2926brel 4591 . . . . . . . . . . 11  |-  ( t 
<Q  B  ->  ( t  e.  Q.  /\  B  e.  Q. ) )
3025, 29syl 14 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
( t  e.  Q.  /\  B  e.  Q. )
)
31 lt2addnq 7212 . . . . . . . . . 10  |-  ( ( ( s  e.  Q.  /\  A  e.  Q. )  /\  ( t  e.  Q.  /\  B  e.  Q. )
)  ->  ( (
s  <Q  A  /\  t  <Q  B )  ->  (
s  +Q  t ) 
<Q  ( A  +Q  B
) ) )
3228, 30, 31syl2anc 408 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
( ( s  <Q  A  /\  t  <Q  B )  ->  ( s  +Q  t )  <Q  ( A  +Q  B ) ) )
3316, 25, 32mp2and 429 . . . . . . . 8  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
( s  +Q  t
)  <Q  ( A  +Q  B ) )
34 breq1 3932 . . . . . . . . 9  |-  ( r  =  ( s  +Q  t )  ->  (
r  <Q  ( A  +Q  B )  <->  ( s  +Q  t )  <Q  ( A  +Q  B ) ) )
3534adantl 275 . . . . . . . 8  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
( r  <Q  ( A  +Q  B )  <->  ( s  +Q  t )  <Q  ( A  +Q  B ) ) )
3633, 35mpbird 166 . . . . . . 7  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
r  <Q  ( A  +Q  B ) )
37 vex 2689 . . . . . . . 8  |-  r  e. 
_V
38 breq1 3932 . . . . . . . 8  |-  ( l  =  r  ->  (
l  <Q  ( A  +Q  B )  <->  r  <Q  ( A  +Q  B ) ) )
39 ltnqex 7357 . . . . . . . . 9  |-  { l  |  l  <Q  ( A  +Q  B ) }  e.  _V
40 gtnqex 7358 . . . . . . . . 9  |-  { u  |  ( A  +Q  B )  <Q  u }  e.  _V
4139, 40op1st 6044 . . . . . . . 8  |-  ( 1st `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B )  <Q  u } >. )  =  {
l  |  l  <Q 
( A  +Q  B
) }
4237, 38, 41elab2 2832 . . . . . . 7  |-  ( r  e.  ( 1st `  <. { l  |  l  <Q 
( A  +Q  B
) } ,  {
u  |  ( A  +Q  B )  <Q  u } >. )  <->  r  <Q  ( A  +Q  B ) )
4336, 42sylibr 133 . . . . . 6  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
r  e.  ( 1st `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B )  <Q  u } >. ) )
4443ex 114 . . . . 5  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  Q. )  /\  r  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  ->  (
r  =  ( s  +Q  t )  -> 
r  e.  ( 1st `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B )  <Q  u } >. ) ) )
4544rexlimdvva 2557 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 1st `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )  -> 
( E. s  e.  ( 1st `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. ) E. t  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) r  =  ( s  +Q  t )  ->  r  e.  ( 1st `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B
)  <Q  u } >. ) ) )
467, 45mpd 13 . . 3  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 1st `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )  -> 
r  e.  ( 1st `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B )  <Q  u } >. ) )
4746ex 114 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( r  e.  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  ->  r  e.  ( 1st `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B
)  <Q  u } >. ) ) )
4847ssrdv 3103 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( 1st `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  C_  ( 1st ` 
<. { l  |  l 
<Q  ( A  +Q  B
) } ,  {
u  |  ( A  +Q  B )  <Q  u } >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   {cab 2125   E.wrex 2417    C_ wss 3071   <.cop 3530   class class class wbr 3929   ` cfv 5123  (class class class)co 5774   1stc1st 6036   Q.cnq 7088    +Q cplq 7090    <Q cltq 7093   P.cnp 7099    +P. cpp 7101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-lti 7115  df-plpq 7152  df-mpq 7153  df-enq 7155  df-nqqs 7156  df-plqqs 7157  df-mqqs 7158  df-1nqqs 7159  df-rq 7160  df-ltnqqs 7161  df-inp 7274  df-iplp 7276
This theorem is referenced by:  addnqprlemfu  7368  addnqpr  7369
  Copyright terms: Public domain W3C validator