ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnqprlemru Unicode version

Theorem addnqprlemru 6799
Description: Lemma for addnqpr 6802. The reverse subset relationship for the upper cut. (Contributed by Jim Kingdon, 19-Aug-2020.)
Assertion
Ref Expression
addnqprlemru  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  C_  ( 2nd ` 
<. { l  |  l 
<Q  ( A  +Q  B
) } ,  {
u  |  ( A  +Q  B )  <Q  u } >. ) )
Distinct variable groups:    A, l, u    B, l, u

Proof of Theorem addnqprlemru
Dummy variables  f  g  h  r  s  t  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqprlu 6788 . . . . . 6  |-  ( A  e.  Q.  ->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  e.  P. )
2 nqprlu 6788 . . . . . 6  |-  ( B  e.  Q.  ->  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >.  e.  P. )
3 df-iplp 6709 . . . . . . 7  |-  +P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  x )  /\  h  e.  ( 1st `  y
)  /\  f  =  ( g  +Q  h
) ) } ,  { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  x )  /\  h  e.  ( 2nd `  y
)  /\  f  =  ( g  +Q  h
) ) } >. )
4 addclnq 6616 . . . . . . 7  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  +Q  h
)  e.  Q. )
53, 4genpelvu 6754 . . . . . 6  |-  ( (
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  e.  P.  /\ 
<. { l  |  l 
<Q  B } ,  {
u  |  B  <Q  u } >.  e.  P. )  ->  ( r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  <->  E. s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. ) E. t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
r  =  ( s  +Q  t ) ) )
61, 2, 5syl2an 283 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  <->  E. s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. ) E. t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
r  =  ( s  +Q  t ) ) )
76biimpa 290 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )  ->  E. s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. ) E. t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
r  =  ( s  +Q  t ) )
8 vex 2605 . . . . . . . . . . . . 13  |-  s  e. 
_V
9 breq2 3791 . . . . . . . . . . . . 13  |-  ( u  =  s  ->  ( A  <Q  u  <->  A  <Q  s ) )
10 ltnqex 6790 . . . . . . . . . . . . . 14  |-  { l  |  l  <Q  A }  e.  _V
11 gtnqex 6791 . . . . . . . . . . . . . 14  |-  { u  |  A  <Q  u }  e.  _V
1210, 11op2nd 5799 . . . . . . . . . . . . 13  |-  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  =  { u  |  A  <Q  u }
138, 9, 12elab2 2742 . . . . . . . . . . . 12  |-  ( s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  <->  A  <Q  s )
1413biimpi 118 . . . . . . . . . . 11  |-  ( s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  ->  A  <Q  s )
1514ad2antrl 474 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  ->  A  <Q  s )
1615adantr 270 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  ->  A  <Q  s )
17 vex 2605 . . . . . . . . . . . . 13  |-  t  e. 
_V
18 breq2 3791 . . . . . . . . . . . . 13  |-  ( u  =  t  ->  ( B  <Q  u  <->  B  <Q  t ) )
19 ltnqex 6790 . . . . . . . . . . . . . 14  |-  { l  |  l  <Q  B }  e.  _V
20 gtnqex 6791 . . . . . . . . . . . . . 14  |-  { u  |  B  <Q  u }  e.  _V
2119, 20op2nd 5799 . . . . . . . . . . . . 13  |-  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )  =  { u  |  B  <Q  u }
2217, 18, 21elab2 2742 . . . . . . . . . . . 12  |-  ( t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )  <->  B  <Q  t )
2322biimpi 118 . . . . . . . . . . 11  |-  ( t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )  ->  B  <Q  t )
2423ad2antll 475 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  ->  B  <Q  t )
2524adantr 270 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  ->  B  <Q  t )
26 ltrelnq 6606 . . . . . . . . . . . 12  |-  <Q  C_  ( Q.  X.  Q. )
2726brel 4412 . . . . . . . . . . 11  |-  ( A 
<Q  s  ->  ( A  e.  Q.  /\  s  e.  Q. ) )
2816, 27syl 14 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
( A  e.  Q.  /\  s  e.  Q. )
)
2926brel 4412 . . . . . . . . . . 11  |-  ( B 
<Q  t  ->  ( B  e.  Q.  /\  t  e.  Q. ) )
3025, 29syl 14 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
( B  e.  Q.  /\  t  e.  Q. )
)
31 lt2addnq 6645 . . . . . . . . . 10  |-  ( ( ( A  e.  Q.  /\  s  e.  Q. )  /\  ( B  e.  Q.  /\  t  e.  Q. )
)  ->  ( ( A  <Q  s  /\  B  <Q  t )  ->  ( A  +Q  B )  <Q 
( s  +Q  t
) ) )
3228, 30, 31syl2anc 403 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
( ( A  <Q  s  /\  B  <Q  t
)  ->  ( A  +Q  B )  <Q  (
s  +Q  t ) ) )
3316, 25, 32mp2and 424 . . . . . . . 8  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
( A  +Q  B
)  <Q  ( s  +Q  t ) )
34 breq2 3791 . . . . . . . . 9  |-  ( r  =  ( s  +Q  t )  ->  (
( A  +Q  B
)  <Q  r  <->  ( A  +Q  B )  <Q  (
s  +Q  t ) ) )
3534adantl 271 . . . . . . . 8  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
( ( A  +Q  B )  <Q  r  <->  ( A  +Q  B ) 
<Q  ( s  +Q  t
) ) )
3633, 35mpbird 165 . . . . . . 7  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
( A  +Q  B
)  <Q  r )
37 vex 2605 . . . . . . . 8  |-  r  e. 
_V
38 breq2 3791 . . . . . . . 8  |-  ( u  =  r  ->  (
( A  +Q  B
)  <Q  u  <->  ( A  +Q  B )  <Q  r
) )
39 ltnqex 6790 . . . . . . . . 9  |-  { l  |  l  <Q  ( A  +Q  B ) }  e.  _V
40 gtnqex 6791 . . . . . . . . 9  |-  { u  |  ( A  +Q  B )  <Q  u }  e.  _V
4139, 40op2nd 5799 . . . . . . . 8  |-  ( 2nd `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B )  <Q  u } >. )  =  {
u  |  ( A  +Q  B )  <Q  u }
4237, 38, 41elab2 2742 . . . . . . 7  |-  ( r  e.  ( 2nd `  <. { l  |  l  <Q 
( A  +Q  B
) } ,  {
u  |  ( A  +Q  B )  <Q  u } >. )  <->  ( A  +Q  B )  <Q  r
)
4336, 42sylibr 132 . . . . . 6  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
r  e.  ( 2nd `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B )  <Q  u } >. ) )
4443ex 113 . . . . 5  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  ->  (
r  =  ( s  +Q  t )  -> 
r  e.  ( 2nd `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B )  <Q  u } >. ) ) )
4544rexlimdvva 2485 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )  -> 
( E. s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. ) E. t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) r  =  ( s  +Q  t )  ->  r  e.  ( 2nd `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B
)  <Q  u } >. ) ) )
467, 45mpd 13 . . 3  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )  -> 
r  e.  ( 2nd `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B )  <Q  u } >. ) )
4746ex 113 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  ->  r  e.  ( 2nd `  <. { l  |  l  <Q  ( A  +Q  B ) } ,  { u  |  ( A  +Q  B
)  <Q  u } >. ) ) )
4847ssrdv 3006 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  C_  ( 2nd ` 
<. { l  |  l 
<Q  ( A  +Q  B
) } ,  {
u  |  ( A  +Q  B )  <Q  u } >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1285    e. wcel 1434   {cab 2068   E.wrex 2350    C_ wss 2974   <.cop 3403   class class class wbr 3787   ` cfv 4926  (class class class)co 5537   2ndc2nd 5791   Q.cnq 6521    +Q cplq 6523    <Q cltq 6526   P.cnp 6532    +P. cpp 6534
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3895  ax-sep 3898  ax-nul 3906  ax-pow 3950  ax-pr 3966  ax-un 4190  ax-setind 4282  ax-iinf 4331
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3253  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3604  df-int 3639  df-iun 3682  df-br 3788  df-opab 3842  df-mpt 3843  df-tr 3878  df-eprel 4046  df-id 4050  df-po 4053  df-iso 4054  df-iord 4123  df-on 4125  df-suc 4128  df-iom 4334  df-xp 4371  df-rel 4372  df-cnv 4373  df-co 4374  df-dm 4375  df-rn 4376  df-res 4377  df-ima 4378  df-iota 4891  df-fun 4928  df-fn 4929  df-f 4930  df-f1 4931  df-fo 4932  df-f1o 4933  df-fv 4934  df-ov 5540  df-oprab 5541  df-mpt2 5542  df-1st 5792  df-2nd 5793  df-recs 5948  df-irdg 6013  df-1o 6059  df-oadd 6063  df-omul 6064  df-er 6165  df-ec 6167  df-qs 6171  df-ni 6545  df-pli 6546  df-mi 6547  df-lti 6548  df-plpq 6585  df-mpq 6586  df-enq 6588  df-nqqs 6589  df-plqqs 6590  df-mqqs 6591  df-1nqqs 6592  df-rq 6593  df-ltnqqs 6594  df-inp 6707  df-iplp 6709
This theorem is referenced by:  addnqprlemfl  6800  addnqpr  6802
  Copyright terms: Public domain W3C validator