ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alexdc Unicode version

Theorem alexdc 1526
Description: Theorem 19.6 of [Margaris] p. 89, given a decidability condition. The forward direction holds for all propositions, as seen at alexim 1552. (Contributed by Jim Kingdon, 2-Jun-2018.)
Assertion
Ref Expression
alexdc  |-  ( A. xDECID  ph 
->  ( A. x ph  <->  -. 
E. x  -.  ph ) )

Proof of Theorem alexdc
StepHypRef Expression
1 nfa1 1450 . . 3  |-  F/ x A. xDECID 
ph
2 notnotbdc 777 . . . 4  |-  (DECID  ph  ->  (
ph 
<->  -.  -.  ph )
)
32sps 1446 . . 3  |-  ( A. xDECID  ph 
->  ( ph  <->  -.  -.  ph ) )
41, 3albid 1522 . 2  |-  ( A. xDECID  ph 
->  ( A. x ph  <->  A. x  -.  -.  ph ) )
5 alnex 1404 . 2  |-  ( A. x  -.  -.  ph  <->  -.  E. x  -.  ph )
64, 5syl6bb 189 1  |-  ( A. xDECID  ph 
->  ( A. x ph  <->  -. 
E. x  -.  ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 102  DECID wdc 753   A.wal 1257   E.wex 1397
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-gen 1354  ax-ie2 1399  ax-4 1416  ax-ial 1443
This theorem depends on definitions:  df-bi 114  df-dc 754  df-tru 1262  df-fal 1265  df-nf 1366
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator