ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  an31 Unicode version

Theorem an31 506
Description: A rearrangement of conjuncts. (Contributed by NM, 24-Jun-2012.) (Proof shortened by Wolf Lammen, 31-Dec-2012.)
Assertion
Ref Expression
an31  |-  ( ( ( ph  /\  ps )  /\  ch )  <->  ( ( ch  /\  ps )  /\  ph ) )

Proof of Theorem an31
StepHypRef Expression
1 an13 505 . 2  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  <->  ( ch  /\  ( ps  /\  ph ) ) )
2 anass 387 . 2  |-  ( ( ( ph  /\  ps )  /\  ch )  <->  ( ph  /\  ( ps  /\  ch ) ) )
3 anass 387 . 2  |-  ( ( ( ch  /\  ps )  /\  ph )  <->  ( ch  /\  ( ps  /\  ph ) ) )
41, 2, 33bitr4i 205 1  |-  ( ( ( ph  /\  ps )  /\  ch )  <->  ( ( ch  /\  ps )  /\  ph ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 101    <-> wb 102
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105
This theorem depends on definitions:  df-bi 114
This theorem is referenced by:  euind  2751  reuind  2767
  Copyright terms: Public domain W3C validator