![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > an4s | Unicode version |
Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.) |
Ref | Expression |
---|---|
an4s.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
an4s |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an4 551 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | an4s.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sylbi 119 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: an42s 554 anandis 557 anandirs 558 trin2 4746 fnun 5036 2elresin 5041 f1co 5132 f1oun 5177 f1oco 5180 f1mpt 5442 poxp 5884 tfrlem7 5966 brecop 6262 th3qlem1 6274 oviec 6278 addcmpblnq 6619 mulcmpblnq 6620 mulpipqqs 6625 mulclnq 6628 mulcanenq 6637 distrnqg 6639 mulcmpblnq0 6696 mulcanenq0ec 6697 mulclnq0 6704 nqnq0a 6706 nqnq0m 6707 distrnq0 6711 genipv 6761 genpelvl 6764 genpelvu 6765 genpml 6769 genpmu 6770 genpcdl 6771 genpcuu 6772 genprndl 6773 genprndu 6774 distrlem1prl 6834 distrlem1pru 6835 ltsopr 6848 addcmpblnr 6978 ltsrprg 6986 addclsr 6992 mulclsr 6993 addasssrg 6995 addresr 7067 mulresr 7068 axaddass 7100 axmulass 7101 axdistr 7102 mulgt0 7253 mul4 7307 add4 7336 2addsub 7389 addsubeq4 7390 sub4 7420 muladd 7555 mulsub 7572 add20i 7660 mulge0i 7787 mulap0b 7812 divmuldivap 7867 ltmul12a 8005 zmulcl 8485 uz2mulcl 8776 qaddcl 8801 qmulcl 8803 qreccl 8808 rpaddcl 8838 ge0addcl 9080 serige0 9570 expge1 9610 rexanuz 10012 amgm2 10142 mulcn2 10289 dvds2ln 10373 opoe 10439 omoe 10440 opeo 10441 omeo 10442 lcmgcd 10604 lcmdvds 10605 bj-indind 10885 |
Copyright terms: Public domain | W3C validator |