ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anabsan Unicode version

Theorem anabsan 517
Description: Absorption of antecedent with conjunction. (Contributed by NM, 24-Mar-1996.) (Revised by NM, 18-Nov-2013.)
Hypothesis
Ref Expression
anabsan.1  |-  ( ( ( ph  /\  ph )  /\  ps )  ->  ch )
Assertion
Ref Expression
anabsan  |-  ( (
ph  /\  ps )  ->  ch )

Proof of Theorem anabsan
StepHypRef Expression
1 pm4.24 381 . 2  |-  ( ph  <->  (
ph  /\  ph ) )
2 anabsan.1 . 2  |-  ( ( ( ph  /\  ph )  /\  ps )  ->  ch )
31, 2sylanb 272 1  |-  ( (
ph  /\  ps )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105
This theorem depends on definitions:  df-bi 114
This theorem is referenced by:  anabss1  518  anabss5  520  anandis  534  iddvds  10121  1dvds  10122
  Copyright terms: Public domain W3C validator