![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anbi1i | Unicode version |
Description: Introduce a right conjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.) |
Ref | Expression |
---|---|
bi.aa |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
anbi1i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi.aa |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | pm5.32ri 443 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: anbi2ci 447 anbi12i 448 an12 526 anandi 555 pm5.53 749 pm5.75 904 3ancoma 927 3ioran 935 an6 1253 19.26-3an 1413 19.28h 1495 19.28 1496 eeeanv 1850 sb3an 1874 moanim 2016 nfrexdya 2402 r19.26-3 2488 r19.41 2510 rexcomf 2517 3reeanv 2525 cbvreu 2576 ceqsex3v 2642 rexab 2755 rexrab 2756 rmo4 2786 reuind 2796 sbc3an 2876 rmo3 2906 ssrab 3073 rexun 3153 elin3 3164 inass 3183 unssdif 3206 indifdir 3227 difin2 3233 inrab2 3244 rabun2 3250 reuun2 3254 undif4 3313 rexsns 3440 rexdifsn 3529 2ralunsn 3598 iuncom4 3693 iunxiun 3765 inuni 3938 unidif0 3949 bnd2 3955 otth2 4004 copsexg 4007 copsex4g 4010 opeqsn 4015 opelopabsbALT 4022 suc11g 4308 rabxp 4406 opeliunxp 4421 xpundir 4423 xpiundi 4424 xpiundir 4425 brinxp2 4433 rexiunxp 4506 brres 4646 brresg 4648 dmres 4660 resiexg 4683 dminss 4768 imainss 4769 ssrnres 4793 elxp4 4838 elxp5 4839 cnvresima 4840 coundi 4852 resco 4855 imaco 4856 coiun 4860 coi1 4866 coass 4869 xpcom 4894 dffun2 4942 fncnv 4996 imadiflem 5009 imadif 5010 imainlem 5011 mptun 5060 fcnvres 5104 dff1o2 5162 dff1o3 5163 ffoss 5189 f11o 5190 brprcneu 5202 fvun2 5272 eqfnfv3 5299 respreima 5327 f1ompt 5352 fsn 5367 abrexco 5430 imaiun 5431 f1mpt 5442 dff1o6 5447 oprabid 5568 dfoprab2 5583 oprab4 5606 mpt2mptx 5626 opabex3d 5779 opabex3 5780 abexssex 5783 dfopab2 5846 dfoprab3s 5847 1stconst 5873 2ndconst 5874 xporderlem 5883 spc2ed 5885 f1od2 5887 brtpos2 5900 tpostpos 5913 tposmpt2 5930 oviec 6278 domen 6298 xpsnen 6365 xpcomco 6370 xpassen 6374 ltexpi 6589 dfmq0qs 6681 dfplq0qs 6682 enq0enq 6683 enq0ref 6685 enq0tr 6686 nqnq0pi 6690 prnmaxl 6740 prnminu 6741 addsrpr 6984 mulsrpr 6985 addcnsr 7064 mulcnsr 7065 ltresr 7069 addvalex 7074 axprecex 7108 elnnz 8442 fnn0ind 8544 rexuz2 8750 qreccl 8808 rexrp 8837 elixx3g 9000 elfz2 9112 elfzuzb 9115 fznn 9182 elfz2nn0 9205 fznn0 9206 4fvwrd4 9227 elfzo2 9237 fzind2 9325 cvg1nlemres 10009 divalgb 10469 bezoutlemmain 10531 isprm2 10643 oddpwdc 10696 bdcriota 10832 bj-peano4 10908 alsconv 10949 |
Copyright terms: Public domain | W3C validator |