ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anc2r Unicode version

Theorem anc2r 321
Description: Conjoin antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994.)
Assertion
Ref Expression
anc2r  |-  ( (
ph  ->  ( ps  ->  ch ) )  ->  ( ph  ->  ( ps  ->  ( ch  /\  ph )
) ) )

Proof of Theorem anc2r
StepHypRef Expression
1 pm3.21 260 . . 3  |-  ( ph  ->  ( ch  ->  ( ch  /\  ph ) ) )
21imim2d 53 . 2  |-  ( ph  ->  ( ( ps  ->  ch )  ->  ( ps  ->  ( ch  /\  ph ) ) ) )
32a2i 11 1  |-  ( (
ph  ->  ( ps  ->  ch ) )  ->  ( ph  ->  ( ps  ->  ( ch  /\  ph )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia3 106
This theorem is referenced by:  ssorduni  4239
  Copyright terms: Public domain W3C validator