ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancom1s Unicode version

Theorem ancom1s 534
Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
Hypothesis
Ref Expression
an32s.1  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  th )
Assertion
Ref Expression
ancom1s  |-  ( ( ( ps  /\  ph )  /\  ch )  ->  th )

Proof of Theorem ancom1s
StepHypRef Expression
1 pm3.22 261 . 2  |-  ( ( ps  /\  ph )  ->  ( ph  /\  ps ) )
2 an32s.1 . 2  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  th )
31, 2sylan 277 1  |-  ( ( ( ps  /\  ph )  /\  ch )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106
This theorem is referenced by:  bilukdc  1328  prarloc  6807  leltadd  7670  divmul13ap  7922  modqmulmodr  9524  fzomaxdif  10200
  Copyright terms: Public domain W3C validator