ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancomsimp Unicode version

Theorem ancomsimp 1370
Description: Closed form of ancoms 264. (Contributed by Alan Sare, 31-Dec-2011.)
Assertion
Ref Expression
ancomsimp  |-  ( ( ( ph  /\  ps )  ->  ch )  <->  ( ( ps  /\  ph )  ->  ch ) )

Proof of Theorem ancomsimp
StepHypRef Expression
1 ancom 262 . 2  |-  ( (
ph  /\  ps )  <->  ( ps  /\  ph )
)
21imbi1i 236 1  |-  ( ( ( ph  /\  ps )  ->  ch )  <->  ( ( ps  /\  ph )  ->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  ralcomf  2516
  Copyright terms: Public domain W3C validator