![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anidm | Unicode version |
Description: Idempotent law for conjunction. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 14-Mar-2014.) |
Ref | Expression |
---|---|
anidm |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.24 387 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | bicomi 130 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: anidmdbi 390 anandi 555 anandir 556 truantru 1333 falanfal 1336 truxortru 1351 truxorfal 1352 falxortru 1353 falxorfal 1354 sbnf2 1899 2eu4 2035 inidm 3182 ralidm 3349 opcom 4013 opeqsn 4015 poirr 4070 rnxpid 4785 xp11m 4789 fununi 4998 brprcneu 5202 erinxp 6246 dom2lem 6319 dmaddpi 6577 dmmulpi 6578 enq0ref 6685 enq0tr 6686 expap0 9603 sqap0 9639 gcddvds 10499 |
Copyright terms: Public domain | W3C validator |