ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  appdivnq Unicode version

Theorem appdivnq 6804
Description: Approximate division for positive rationals. Proposition 12.7 of [BauerTaylor], p. 55 (a special case where  A and  B are positive, as well as  C). Our proof is simpler than the one in BauerTaylor because we have reciprocals. (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
appdivnq  |-  ( ( A  <Q  B  /\  C  e.  Q. )  ->  E. m  e.  Q.  ( A  <Q  ( m  .Q  C )  /\  ( m  .Q  C
)  <Q  B ) )
Distinct variable groups:    A, m    B, m    C, m

Proof of Theorem appdivnq
StepHypRef Expression
1 simpl 107 . . . 4  |-  ( ( A  <Q  B  /\  C  e.  Q. )  ->  A  <Q  B )
2 ltrelnq 6606 . . . . . . . 8  |-  <Q  C_  ( Q.  X.  Q. )
32brel 4412 . . . . . . 7  |-  ( A 
<Q  B  ->  ( A  e.  Q.  /\  B  e.  Q. ) )
43adantr 270 . . . . . 6  |-  ( ( A  <Q  B  /\  C  e.  Q. )  ->  ( A  e.  Q.  /\  B  e.  Q. )
)
54simpld 110 . . . . 5  |-  ( ( A  <Q  B  /\  C  e.  Q. )  ->  A  e.  Q. )
64simprd 112 . . . . 5  |-  ( ( A  <Q  B  /\  C  e.  Q. )  ->  B  e.  Q. )
7 recclnq 6633 . . . . . 6  |-  ( C  e.  Q.  ->  ( *Q `  C )  e. 
Q. )
87adantl 271 . . . . 5  |-  ( ( A  <Q  B  /\  C  e.  Q. )  ->  ( *Q `  C
)  e.  Q. )
9 ltmnqg 6642 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  ( *Q `  C )  e. 
Q. )  ->  ( A  <Q  B  <->  ( ( *Q `  C )  .Q  A )  <Q  (
( *Q `  C
)  .Q  B ) ) )
105, 6, 8, 9syl3anc 1170 . . . 4  |-  ( ( A  <Q  B  /\  C  e.  Q. )  ->  ( A  <Q  B  <->  ( ( *Q `  C )  .Q  A )  <Q  (
( *Q `  C
)  .Q  B ) ) )
111, 10mpbid 145 . . 3  |-  ( ( A  <Q  B  /\  C  e.  Q. )  ->  ( ( *Q `  C )  .Q  A
)  <Q  ( ( *Q
`  C )  .Q  B ) )
12 ltbtwnnqq 6656 . . 3  |-  ( ( ( *Q `  C
)  .Q  A ) 
<Q  ( ( *Q `  C )  .Q  B
)  <->  E. m  e.  Q.  ( ( ( *Q
`  C )  .Q  A )  <Q  m  /\  m  <Q  ( ( *Q `  C )  .Q  B ) ) )
1311, 12sylib 120 . 2  |-  ( ( A  <Q  B  /\  C  e.  Q. )  ->  E. m  e.  Q.  ( ( ( *Q
`  C )  .Q  A )  <Q  m  /\  m  <Q  ( ( *Q `  C )  .Q  B ) ) )
148adantr 270 . . . . . . . . 9  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( *Q `  C )  e.  Q. )
155adantr 270 . . . . . . . . 9  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  A  e.  Q. )
16 mulclnq 6617 . . . . . . . . 9  |-  ( ( ( *Q `  C
)  e.  Q.  /\  A  e.  Q. )  ->  ( ( *Q `  C )  .Q  A
)  e.  Q. )
1714, 15, 16syl2anc 403 . . . . . . . 8  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( *Q
`  C )  .Q  A )  e.  Q. )
18 simpr 108 . . . . . . . 8  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  m  e.  Q. )
19 simplr 497 . . . . . . . 8  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  C  e.  Q. )
20 ltmnqg 6642 . . . . . . . 8  |-  ( ( ( ( *Q `  C )  .Q  A
)  e.  Q.  /\  m  e.  Q.  /\  C  e.  Q. )  ->  (
( ( *Q `  C )  .Q  A
)  <Q  m  <->  ( C  .Q  ( ( *Q `  C )  .Q  A
) )  <Q  ( C  .Q  m ) ) )
2117, 18, 19, 20syl3anc 1170 . . . . . . 7  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( ( *Q `  C )  .Q  A )  <Q  m 
<->  ( C  .Q  (
( *Q `  C
)  .Q  A ) )  <Q  ( C  .Q  m ) ) )
22 recidnq 6634 . . . . . . . . . . 11  |-  ( C  e.  Q.  ->  ( C  .Q  ( *Q `  C ) )  =  1Q )
2322oveq1d 5552 . . . . . . . . . 10  |-  ( C  e.  Q.  ->  (
( C  .Q  ( *Q `  C ) )  .Q  A )  =  ( 1Q  .Q  A
) )
2423ad2antlr 473 . . . . . . . . 9  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( C  .Q  ( *Q `  C ) )  .Q  A )  =  ( 1Q  .Q  A ) )
25 mulassnqg 6625 . . . . . . . . . 10  |-  ( ( C  e.  Q.  /\  ( *Q `  C )  e.  Q.  /\  A  e.  Q. )  ->  (
( C  .Q  ( *Q `  C ) )  .Q  A )  =  ( C  .Q  (
( *Q `  C
)  .Q  A ) ) )
2619, 14, 15, 25syl3anc 1170 . . . . . . . . 9  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( C  .Q  ( *Q `  C ) )  .Q  A )  =  ( C  .Q  ( ( *Q `  C )  .Q  A ) ) )
27 1nq 6607 . . . . . . . . . . . 12  |-  1Q  e.  Q.
28 mulcomnqg 6624 . . . . . . . . . . . 12  |-  ( ( 1Q  e.  Q.  /\  A  e.  Q. )  ->  ( 1Q  .Q  A
)  =  ( A  .Q  1Q ) )
2927, 28mpan 415 . . . . . . . . . . 11  |-  ( A  e.  Q.  ->  ( 1Q  .Q  A )  =  ( A  .Q  1Q ) )
30 mulidnq 6630 . . . . . . . . . . 11  |-  ( A  e.  Q.  ->  ( A  .Q  1Q )  =  A )
3129, 30eqtrd 2114 . . . . . . . . . 10  |-  ( A  e.  Q.  ->  ( 1Q  .Q  A )  =  A )
3215, 31syl 14 . . . . . . . . 9  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( 1Q  .Q  A )  =  A )
3324, 26, 323eqtr3d 2122 . . . . . . . 8  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( C  .Q  ( ( *Q `  C )  .Q  A
) )  =  A )
3433breq1d 3797 . . . . . . 7  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( C  .Q  ( ( *Q
`  C )  .Q  A ) )  <Q 
( C  .Q  m
)  <->  A  <Q  ( C  .Q  m ) ) )
3521, 34bitrd 186 . . . . . 6  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( ( *Q `  C )  .Q  A )  <Q  m 
<->  A  <Q  ( C  .Q  m ) ) )
366adantr 270 . . . . . . . . 9  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  B  e.  Q. )
37 mulclnq 6617 . . . . . . . . 9  |-  ( ( ( *Q `  C
)  e.  Q.  /\  B  e.  Q. )  ->  ( ( *Q `  C )  .Q  B
)  e.  Q. )
3814, 36, 37syl2anc 403 . . . . . . . 8  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( *Q
`  C )  .Q  B )  e.  Q. )
39 ltmnqg 6642 . . . . . . . 8  |-  ( ( m  e.  Q.  /\  ( ( *Q `  C )  .Q  B
)  e.  Q.  /\  C  e.  Q. )  ->  ( m  <Q  (
( *Q `  C
)  .Q  B )  <-> 
( C  .Q  m
)  <Q  ( C  .Q  ( ( *Q `  C )  .Q  B
) ) ) )
4018, 38, 19, 39syl3anc 1170 . . . . . . 7  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( m  <Q  ( ( *Q `  C
)  .Q  B )  <-> 
( C  .Q  m
)  <Q  ( C  .Q  ( ( *Q `  C )  .Q  B
) ) ) )
4122oveq1d 5552 . . . . . . . . . 10  |-  ( C  e.  Q.  ->  (
( C  .Q  ( *Q `  C ) )  .Q  B )  =  ( 1Q  .Q  B
) )
4241ad2antlr 473 . . . . . . . . 9  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( C  .Q  ( *Q `  C ) )  .Q  B )  =  ( 1Q  .Q  B ) )
43 mulassnqg 6625 . . . . . . . . . 10  |-  ( ( C  e.  Q.  /\  ( *Q `  C )  e.  Q.  /\  B  e.  Q. )  ->  (
( C  .Q  ( *Q `  C ) )  .Q  B )  =  ( C  .Q  (
( *Q `  C
)  .Q  B ) ) )
4419, 14, 36, 43syl3anc 1170 . . . . . . . . 9  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( C  .Q  ( *Q `  C ) )  .Q  B )  =  ( C  .Q  ( ( *Q `  C )  .Q  B ) ) )
45 mulcomnqg 6624 . . . . . . . . . . . 12  |-  ( ( 1Q  e.  Q.  /\  B  e.  Q. )  ->  ( 1Q  .Q  B
)  =  ( B  .Q  1Q ) )
4627, 45mpan 415 . . . . . . . . . . 11  |-  ( B  e.  Q.  ->  ( 1Q  .Q  B )  =  ( B  .Q  1Q ) )
47 mulidnq 6630 . . . . . . . . . . 11  |-  ( B  e.  Q.  ->  ( B  .Q  1Q )  =  B )
4846, 47eqtrd 2114 . . . . . . . . . 10  |-  ( B  e.  Q.  ->  ( 1Q  .Q  B )  =  B )
4936, 48syl 14 . . . . . . . . 9  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( 1Q  .Q  B )  =  B )
5042, 44, 493eqtr3d 2122 . . . . . . . 8  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( C  .Q  ( ( *Q `  C )  .Q  B
) )  =  B )
5150breq2d 3799 . . . . . . 7  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( C  .Q  m )  <Q 
( C  .Q  (
( *Q `  C
)  .Q  B ) )  <->  ( C  .Q  m )  <Q  B ) )
5240, 51bitrd 186 . . . . . 6  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( m  <Q  ( ( *Q `  C
)  .Q  B )  <-> 
( C  .Q  m
)  <Q  B ) )
5335, 52anbi12d 457 . . . . 5  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( ( ( *Q `  C
)  .Q  A ) 
<Q  m  /\  m  <Q  ( ( *Q `  C )  .Q  B
) )  <->  ( A  <Q  ( C  .Q  m
)  /\  ( C  .Q  m )  <Q  B ) ) )
54 mulcomnqg 6624 . . . . . . . 8  |-  ( ( C  e.  Q.  /\  m  e.  Q. )  ->  ( C  .Q  m
)  =  ( m  .Q  C ) )
5519, 18, 54syl2anc 403 . . . . . . 7  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( C  .Q  m )  =  ( m  .Q  C ) )
5655breq2d 3799 . . . . . 6  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( A  <Q  ( C  .Q  m )  <-> 
A  <Q  ( m  .Q  C ) ) )
5755breq1d 3797 . . . . . 6  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( C  .Q  m )  <Q  B 
<->  ( m  .Q  C
)  <Q  B ) )
5856, 57anbi12d 457 . . . . 5  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( A 
<Q  ( C  .Q  m
)  /\  ( C  .Q  m )  <Q  B )  <-> 
( A  <Q  (
m  .Q  C )  /\  ( m  .Q  C )  <Q  B ) ) )
5953, 58bitrd 186 . . . 4  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( ( ( *Q `  C
)  .Q  A ) 
<Q  m  /\  m  <Q  ( ( *Q `  C )  .Q  B
) )  <->  ( A  <Q  ( m  .Q  C
)  /\  ( m  .Q  C )  <Q  B ) ) )
6059biimpd 142 . . 3  |-  ( ( ( A  <Q  B  /\  C  e.  Q. )  /\  m  e.  Q. )  ->  ( ( ( ( *Q `  C
)  .Q  A ) 
<Q  m  /\  m  <Q  ( ( *Q `  C )  .Q  B
) )  ->  ( A  <Q  ( m  .Q  C )  /\  (
m  .Q  C ) 
<Q  B ) ) )
6160reximdva 2464 . 2  |-  ( ( A  <Q  B  /\  C  e.  Q. )  ->  ( E. m  e. 
Q.  ( ( ( *Q `  C )  .Q  A )  <Q  m  /\  m  <Q  (
( *Q `  C
)  .Q  B ) )  ->  E. m  e.  Q.  ( A  <Q  ( m  .Q  C )  /\  ( m  .Q  C )  <Q  B ) ) )
6213, 61mpd 13 1  |-  ( ( A  <Q  B  /\  C  e.  Q. )  ->  E. m  e.  Q.  ( A  <Q  ( m  .Q  C )  /\  ( m  .Q  C
)  <Q  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1285    e. wcel 1434   E.wrex 2350   class class class wbr 3787   ` cfv 4926  (class class class)co 5537   Q.cnq 6521   1Qc1q 6522    .Q cmq 6524   *Qcrq 6525    <Q cltq 6526
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3895  ax-sep 3898  ax-nul 3906  ax-pow 3950  ax-pr 3966  ax-un 4190  ax-setind 4282  ax-iinf 4331
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3253  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3604  df-int 3639  df-iun 3682  df-br 3788  df-opab 3842  df-mpt 3843  df-tr 3878  df-eprel 4046  df-id 4050  df-po 4053  df-iso 4054  df-iord 4123  df-on 4125  df-suc 4128  df-iom 4334  df-xp 4371  df-rel 4372  df-cnv 4373  df-co 4374  df-dm 4375  df-rn 4376  df-res 4377  df-ima 4378  df-iota 4891  df-fun 4928  df-fn 4929  df-f 4930  df-f1 4931  df-fo 4932  df-f1o 4933  df-fv 4934  df-ov 5540  df-oprab 5541  df-mpt2 5542  df-1st 5792  df-2nd 5793  df-recs 5948  df-irdg 6013  df-1o 6059  df-oadd 6063  df-omul 6064  df-er 6165  df-ec 6167  df-qs 6171  df-ni 6545  df-pli 6546  df-mi 6547  df-lti 6548  df-plpq 6585  df-mpq 6586  df-enq 6588  df-nqqs 6589  df-plqqs 6590  df-mqqs 6591  df-1nqqs 6592  df-rq 6593  df-ltnqqs 6594
This theorem is referenced by:  appdiv0nq  6805  mullocpr  6812
  Copyright terms: Public domain W3C validator