ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apreap Unicode version

Theorem apreap 8349
Description: Complex apartness and real apartness agree on the real numbers. (Contributed by Jim Kingdon, 31-Jan-2020.)
Assertion
Ref Expression
apreap  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  A #  B )
)

Proof of Theorem apreap
Dummy variables  r  s  t  u  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2146 . . . . . . . 8  |-  ( x  =  A  ->  (
x  =  ( r  +  ( _i  x.  s ) )  <->  A  =  ( r  +  ( _i  x.  s ) ) ) )
21anbi1d 460 . . . . . . 7  |-  ( x  =  A  ->  (
( x  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  <->  ( A  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) ) ) )
32anbi1d 460 . . . . . 6  |-  ( x  =  A  ->  (
( ( x  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) )  <->  ( ( A  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
432rexbidv 2460 . . . . 5  |-  ( x  =  A  ->  ( E. t  e.  RR  E. u  e.  RR  (
( x  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )  <->  E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
542rexbidv 2460 . . . 4  |-  ( x  =  A  ->  ( E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )  <->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
6 eqeq1 2146 . . . . . . . 8  |-  ( y  =  B  ->  (
y  =  ( t  +  ( _i  x.  u ) )  <->  B  =  ( t  +  ( _i  x.  u ) ) ) )
76anbi2d 459 . . . . . . 7  |-  ( y  =  B  ->  (
( A  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  <->  ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) ) ) )
87anbi1d 460 . . . . . 6  |-  ( y  =  B  ->  (
( ( A  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) )  <->  ( ( A  =  ( r  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
982rexbidv 2460 . . . . 5  |-  ( y  =  B  ->  ( E. t  e.  RR  E. u  e.  RR  (
( A  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )  <->  E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( r  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
1092rexbidv 2460 . . . 4  |-  ( y  =  B  ->  ( E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )  <->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( r  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
11 df-ap 8344 . . . 4  |- #  =  { <. x ,  y >.  |  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) }
125, 10, 11brabg 4191 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( r  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
13 simplll 522 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  ->  A  e.  RR )
1413adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  A  e.  RR )
15 simplrl 524 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  -> 
r  e.  RR )
1615adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  r  e.  RR )
17 simplrr 525 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  -> 
s  e.  RR )
1817adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  s  e.  RR )
19 simprll 526 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  A  =  ( r  +  ( _i  x.  s
) ) )
20 rereim 8348 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  r  e.  RR )  /\  ( s  e.  RR  /\  A  =  ( r  +  ( _i  x.  s ) ) ) )  -> 
( r  =  A  /\  s  =  0 ) )
2114, 16, 18, 19, 20syl22anc 1217 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  (
r  =  A  /\  s  =  0 ) )
2221simprd 113 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  s  =  0 )
23 simpllr 523 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  ->  B  e.  RR )
2423adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  B  e.  RR )
25 simplrl 524 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  t  e.  RR )
26 simplrr 525 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  u  e.  RR )
27 simprlr 527 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  B  =  ( t  +  ( _i  x.  u
) ) )
28 rereim 8348 . . . . . . . . . . . 12  |-  ( ( ( B  e.  RR  /\  t  e.  RR )  /\  ( u  e.  RR  /\  B  =  ( t  +  ( _i  x.  u ) ) ) )  -> 
( t  =  B  /\  u  =  0 ) )
2924, 25, 26, 27, 28syl22anc 1217 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  (
t  =  B  /\  u  =  0 ) )
3029simprd 113 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  u  =  0 )
3122, 30eqtr4d 2175 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  s  =  u )
32 reapti 8341 . . . . . . . . . 10  |-  ( ( s  e.  RR  /\  u  e.  RR )  ->  ( s  =  u  <->  -.  s #  u ) )
3318, 26, 32syl2anc 408 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  (
s  =  u  <->  -.  s #  u
) )
3431, 33mpbid 146 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  -.  s #  u )
35 simprr 521 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  (
r #  t  \/  s #  u ) )
3634, 35ecased 1327 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  r #  t
)
3721simpld 111 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  r  =  A )
3829simpld 111 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  t  =  B )
3936, 37, 383brtr3d 3959 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  A #  B
)
4039ex 114 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  -> 
( ( ( A  =  ( r  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )  ->  A #  B
) )
4140rexlimdvva 2557 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( r  e.  RR  /\  s  e.  RR ) )  -> 
( E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( r  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )  ->  A #  B
) )
4241rexlimdvva 2557 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( r  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )  ->  A #  B
) )
4312, 42sylbid 149 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  ->  A #  B ) )
44 ax-icn 7715 . . . . . . . 8  |-  _i  e.  CC
4544mul01i 8153 . . . . . . 7  |-  ( _i  x.  0 )  =  0
4645oveq2i 5785 . . . . . 6  |-  ( A  +  ( _i  x.  0 ) )  =  ( A  +  0 )
47 simp1 981 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  A  e.  RR )
4847recnd 7794 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  A  e.  CC )
4948addid1d 7911 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  ( A  +  0 )  =  A )
5046, 49syl5req 2185 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  A  =  ( A  +  (
_i  x.  0 ) ) )
5145oveq2i 5785 . . . . . 6  |-  ( B  +  ( _i  x.  0 ) )  =  ( B  +  0 )
52 simp2 982 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  B  e.  RR )
5352recnd 7794 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  B  e.  CC )
5453addid1d 7911 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  ( B  +  0 )  =  B )
5551, 54syl5req 2185 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  B  =  ( B  +  (
_i  x.  0 ) ) )
56 olc 700 . . . . . . 7  |-  ( A #  B  ->  ( 0 #  0  \/  A #  B ) )
57563ad2ant3 1004 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  ( 0 #  0  \/  A #  B ) )
5857orcomd 718 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  ( A #  B  \/  0 #  0 ) )
5950, 55, 58jca31 307 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  ( ( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( B  +  ( _i  x.  0 ) ) )  /\  ( A #  B  \/  0 #  0 ) ) )
60 0red 7767 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  0  e.  RR )
61 simpr 109 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  u  =  0 )  ->  u  =  0 )
6261oveq2d 5790 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  u  =  0 )  -> 
( _i  x.  u
)  =  ( _i  x.  0 ) )
6362oveq2d 5790 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  u  =  0 )  -> 
( B  +  ( _i  x.  u ) )  =  ( B  +  ( _i  x.  0 ) ) )
6463eqeq2d 2151 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  u  =  0 )  -> 
( B  =  ( B  +  ( _i  x.  u ) )  <-> 
B  =  ( B  +  ( _i  x.  0 ) ) ) )
6564anbi2d 459 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  u  =  0 )  -> 
( ( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( B  +  ( _i  x.  u ) ) )  <->  ( A  =  ( A  +  ( _i  x.  0
) )  /\  B  =  ( B  +  ( _i  x.  0
) ) ) ) )
6661breq2d 3941 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  u  =  0 )  -> 
( 0 #  u  <->  0 #  0 ) )
6766orbi2d 779 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  u  =  0 )  -> 
( ( A #  B  \/  0 #  u )  <->  ( A #  B  \/  0 #  0 ) ) )
6865, 67anbi12d 464 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  u  =  0 )  -> 
( ( ( A  =  ( A  +  ( _i  x.  0
) )  /\  B  =  ( B  +  ( _i  x.  u
) ) )  /\  ( A #  B  \/  0 #  u
) )  <->  ( ( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( B  +  ( _i  x.  0 ) ) )  /\  ( A #  B  \/  0 #  0 ) ) ) )
6960, 68rspcedv 2793 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  ( (
( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( B  +  ( _i  x.  0 ) ) )  /\  ( A #  B  \/  0 #  0 ) )  ->  E. u  e.  RR  ( ( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( B  +  ( _i  x.  u ) ) )  /\  ( A #  B  \/  0 #  u ) ) ) )
70 simpr 109 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  t  =  B )  ->  t  =  B )
7170oveq1d 5789 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  t  =  B )  ->  (
t  +  ( _i  x.  u ) )  =  ( B  +  ( _i  x.  u
) ) )
7271eqeq2d 2151 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  t  =  B )  ->  ( B  =  ( t  +  ( _i  x.  u ) )  <->  B  =  ( B  +  (
_i  x.  u )
) ) )
7372anbi2d 459 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  t  =  B )  ->  (
( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  <->  ( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( B  +  ( _i  x.  u ) ) ) ) )
7470breq2d 3941 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  t  =  B )  ->  ( A #  t 
<->  A #  B ) )
7574orbi1d 780 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  t  =  B )  ->  (
( A #  t  \/  0 #  u
)  <->  ( A #  B  \/  0 #  u ) ) )
7673, 75anbi12d 464 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  t  =  B )  ->  (
( ( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  ( A #  t  \/  0 #  u ) )  <->  ( ( A  =  ( A  +  ( _i  x.  0
) )  /\  B  =  ( B  +  ( _i  x.  u
) ) )  /\  ( A #  B  \/  0 #  u
) ) ) )
7776rexbidv 2438 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  t  =  B )  ->  ( E. u  e.  RR  ( ( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  ( A #  t  \/  0 #  u ) )  <->  E. u  e.  RR  ( ( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( B  +  ( _i  x.  u ) ) )  /\  ( A #  B  \/  0 #  u ) ) ) )
7852, 77rspcedv 2793 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  ( E. u  e.  RR  (
( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( B  +  ( _i  x.  u ) ) )  /\  ( A #  B  \/  0 #  u ) )  ->  E. t  e.  RR  E. u  e.  RR  (
( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  ( A #  t  \/  0 #  u ) ) ) )
7969, 78syld 45 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  ( (
( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( B  +  ( _i  x.  0 ) ) )  /\  ( A #  B  \/  0 #  0 ) )  ->  E. t  e.  RR  E. u  e.  RR  (
( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  ( A #  t  \/  0 #  u ) ) ) )
80 simpr 109 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  s  =  0 )  -> 
s  =  0 )
8180oveq2d 5790 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  s  =  0 )  -> 
( _i  x.  s
)  =  ( _i  x.  0 ) )
8281oveq2d 5790 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  s  =  0 )  -> 
( A  +  ( _i  x.  s ) )  =  ( A  +  ( _i  x.  0 ) ) )
8382eqeq2d 2151 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  s  =  0 )  -> 
( A  =  ( A  +  ( _i  x.  s ) )  <-> 
A  =  ( A  +  ( _i  x.  0 ) ) ) )
8483anbi1d 460 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  s  =  0 )  -> 
( ( A  =  ( A  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  <->  ( A  =  ( A  +  ( _i  x.  0
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) ) ) )
8580breq1d 3939 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  s  =  0 )  -> 
( s #  u  <->  0 #  u ) )
8685orbi2d 779 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  s  =  0 )  -> 
( ( A #  t  \/  s #  u )  <->  ( A #  t  \/  0 #  u ) ) )
8784, 86anbi12d 464 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  s  =  0 )  -> 
( ( ( A  =  ( A  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( A #  t  \/  s #  u
) )  <->  ( ( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  ( A #  t  \/  0 #  u ) ) ) )
88872rexbidv 2460 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  s  =  0 )  -> 
( E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( A  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( A #  t  \/  s #  u
) )  <->  E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( A  +  ( _i  x.  0
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( A #  t  \/  0 #  u
) ) ) )
8960, 88rspcedv 2793 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  ( E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( A  +  ( _i  x.  0
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( A #  t  \/  0 #  u
) )  ->  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( A  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( A #  t  \/  s #  u
) ) ) )
90 simpr 109 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  r  =  A )  ->  r  =  A )
9190oveq1d 5789 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  r  =  A )  ->  (
r  +  ( _i  x.  s ) )  =  ( A  +  ( _i  x.  s
) ) )
9291eqeq2d 2151 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  r  =  A )  ->  ( A  =  ( r  +  ( _i  x.  s ) )  <->  A  =  ( A  +  (
_i  x.  s )
) ) )
9392anbi1d 460 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  r  =  A )  ->  (
( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  <->  ( A  =  ( A  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) ) ) )
9490breq1d 3939 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  r  =  A )  ->  (
r #  t  <->  A #  t ) )
9594orbi1d 780 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  r  =  A )  ->  (
( r #  t  \/  s #  u
)  <->  ( A #  t  \/  s #  u ) ) )
9693, 95anbi12d 464 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  r  =  A )  ->  (
( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) )  <->  ( ( A  =  ( A  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( A #  t  \/  s #  u
) ) ) )
9796rexbidv 2438 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  r  =  A )  ->  ( E. u  e.  RR  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) )  <->  E. u  e.  RR  ( ( A  =  ( A  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  ( A #  t  \/  s #  u )
) ) )
98972rexbidv 2460 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  r  =  A )  ->  ( E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  (
( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )  <->  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( A  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( A #  t  \/  s #  u
) ) ) )
9947, 98rspcedv 2793 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  ( E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( A  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( A #  t  \/  s #  u
) )  ->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( r  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
10079, 89, 993syld 57 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  ( (
( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( B  +  ( _i  x.  0 ) ) )  /\  ( A #  B  \/  0 #  0 ) )  ->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( r  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
101123adant3 1001 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  ( A #  B 
<->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( r  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
102100, 101sylibrd 168 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  ( (
( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( B  +  ( _i  x.  0 ) ) )  /\  ( A #  B  \/  0 #  0 ) )  ->  A #  B ) )
10359, 102mpd 13 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  A #  B
)
1041033expia 1183 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  ->  A #  B
) )
10543, 104impbid 128 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  A #  B )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    /\ w3a 962    = wceq 1331    e. wcel 1480   E.wrex 2417   class class class wbr 3929  (class class class)co 5774   RRcr 7619   0cc0 7620   _ici 7622    + caddc 7623    x. cmul 7625   # creap 8336   # cap 8343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-ltxr 7805  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344
This theorem is referenced by:  reaplt  8350  apreim  8365  apirr  8367  apti  8384  recexap  8414  rerecclap  8490
  Copyright terms: Public domain W3C validator