ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apsym Unicode version

Theorem apsym 8368
Description: Apartness is symmetric. This theorem for real numbers is part of Definition 11.2.7(v) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Feb-2020.)
Assertion
Ref Expression
apsym  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A #  B  <->  B #  A
) )

Proof of Theorem apsym
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 7762 . . 3  |-  ( B  e.  CC  ->  E. z  e.  RR  E. w  e.  RR  B  =  ( z  +  ( _i  x.  w ) ) )
21adantl 275 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  E. z  e.  RR  E. w  e.  RR  B  =  ( z  +  ( _i  x.  w
) ) )
3 cnre 7762 . . . . . 6  |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
43ad3antrrr 483 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
5 simplrl 524 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  x  e.  RR )
6 simplrl 524 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  z  e.  RR )
76ad2antrr 479 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  z  e.  RR )
8 reaplt 8350 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  z  e.  RR )  ->  ( x #  z  <->  ( x  <  z  \/  z  < 
x ) ) )
95, 7, 8syl2anc 408 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
x #  z  <->  ( x  <  z  \/  z  < 
x ) ) )
10 reaplt 8350 . . . . . . . . . . . . 13  |-  ( ( z  e.  RR  /\  x  e.  RR )  ->  ( z #  x  <->  ( z  <  x  \/  x  < 
z ) ) )
117, 5, 10syl2anc 408 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
z #  x  <->  ( z  <  x  \/  x  < 
z ) ) )
12 orcom 717 . . . . . . . . . . . 12  |-  ( ( x  <  z  \/  z  <  x )  <-> 
( z  <  x  \/  x  <  z ) )
1311, 12syl6bbr 197 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
z #  x  <->  ( x  <  z  \/  z  < 
x ) ) )
149, 13bitr4d 190 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
x #  z  <->  z #  x
) )
15 simplrr 525 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  y  e.  RR )
16 simplrr 525 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  w  e.  RR )
1716ad2antrr 479 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  w  e.  RR )
18 reaplt 8350 . . . . . . . . . . . 12  |-  ( ( y  e.  RR  /\  w  e.  RR )  ->  ( y #  w  <->  ( y  <  w  \/  w  < 
y ) ) )
1915, 17, 18syl2anc 408 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
y #  w  <->  ( y  <  w  \/  w  < 
y ) ) )
20 reaplt 8350 . . . . . . . . . . . . 13  |-  ( ( w  e.  RR  /\  y  e.  RR )  ->  ( w #  y  <->  ( w  <  y  \/  y  < 
w ) ) )
2117, 15, 20syl2anc 408 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
w #  y  <->  ( w  <  y  \/  y  < 
w ) ) )
22 orcom 717 . . . . . . . . . . . 12  |-  ( ( y  <  w  \/  w  <  y )  <-> 
( w  <  y  \/  y  <  w ) )
2321, 22syl6bbr 197 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
w #  y  <->  ( y  <  w  \/  w  < 
y ) ) )
2419, 23bitr4d 190 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
y #  w  <->  w #  y
) )
2514, 24orbi12d 782 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( x #  z  \/  y #  w )  <->  ( z #  x  \/  w #  y
) ) )
26 apreim 8365 . . . . . . . . . 10  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( z  e.  RR  /\  w  e.  RR ) )  -> 
( ( x  +  ( _i  x.  y
) ) #  ( z  +  ( _i  x.  w ) )  <->  ( x #  z  \/  y #  w
) ) )
275, 15, 7, 17, 26syl22anc 1217 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( x  +  ( _i  x.  y ) ) #  ( z  +  ( _i  x.  w
) )  <->  ( x #  z  \/  y #  w
) ) )
28 apreim 8365 . . . . . . . . . 10  |-  ( ( ( z  e.  RR  /\  w  e.  RR )  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( ( z  +  ( _i  x.  w
) ) #  ( x  +  ( _i  x.  y ) )  <->  ( z #  x  \/  w #  y
) ) )
297, 17, 5, 15, 28syl22anc 1217 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( z  +  ( _i  x.  w ) ) #  ( x  +  ( _i  x.  y
) )  <->  ( z #  x  \/  w #  y
) ) )
3025, 27, 293bitr4d 219 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( x  +  ( _i  x.  y ) ) #  ( z  +  ( _i  x.  w
) )  <->  ( z  +  ( _i  x.  w ) ) #  ( x  +  ( _i  x.  y ) ) ) )
31 simpr 109 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  A  =  ( x  +  ( _i  x.  y
) ) )
32 simpllr 523 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  B  =  ( z  +  ( _i  x.  w
) ) )
3331, 32breq12d 3942 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  ( A #  B  <->  ( x  +  ( _i  x.  y
) ) #  ( z  +  ( _i  x.  w ) ) ) )
3432, 31breq12d 3942 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  ( B #  A  <->  ( z  +  ( _i  x.  w
) ) #  ( x  +  ( _i  x.  y ) ) ) )
3530, 33, 343bitr4d 219 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  ( A #  B  <->  B #  A )
)
3635ex 114 . . . . . 6  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  ( A  =  ( x  +  ( _i  x.  y
) )  ->  ( A #  B  <->  B #  A )
) )
3736rexlimdvva 2557 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  ( E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y
) )  ->  ( A #  B  <->  B #  A )
) )
384, 37mpd 13 . . . 4  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  ( A #  B  <->  B #  A )
)
3938ex 114 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  -> 
( B  =  ( z  +  ( _i  x.  w ) )  ->  ( A #  B  <->  B #  A ) ) )
4039rexlimdvva 2557 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( E. z  e.  RR  E. w  e.  RR  B  =  ( z  +  ( _i  x.  w ) )  ->  ( A #  B  <->  B #  A ) ) )
412, 40mpd 13 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A #  B  <->  B #  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    = wceq 1331    e. wcel 1480   E.wrex 2417   class class class wbr 3929  (class class class)co 5774   CCcc 7618   RRcr 7619   _ici 7622    + caddc 7623    x. cmul 7625    < clt 7800   # cap 8343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-ltxr 7805  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344
This theorem is referenced by:  addext  8372  mulext  8376  ltapii  8397  ltapd  8400  apdivmuld  8573  div2subap  8596  recgt0  8608  prodgt0  8610  pwm1geoserap1  11277  absgtap  11279  geolim  11280  geolim2  11281  geo2sum2  11284  geoisum1c  11289  tanaddap  11446  egt2lt3  11486  sqrt2irraplemnn  11857  triap  13224
  Copyright terms: Public domain W3C validator