ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  archpr Unicode version

Theorem archpr 7451
Description: For any positive real, there is an integer that is greater than it. This is also known as the "archimedean property". The integer  x is embedded into the reals as described at nnprlu 7361. (Contributed by Jim Kingdon, 22-Apr-2020.)
Assertion
Ref Expression
archpr  |-  ( A  e.  P.  ->  E. x  e.  N.  A  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )
Distinct variable group:    A, l, u, x

Proof of Theorem archpr
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7283 . . 3  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
2 prmu 7286 . . 3  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  ->  E. z  e.  Q.  z  e.  ( 2nd `  A ) )
31, 2syl 14 . 2  |-  ( A  e.  P.  ->  E. z  e.  Q.  z  e.  ( 2nd `  A ) )
4 archnqq 7225 . . . 4  |-  ( z  e.  Q.  ->  E. x  e.  N.  z  <Q  [ <. x ,  1o >. ]  ~Q  )
54ad2antrl 481 . . 3  |-  ( ( A  e.  P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A ) ) )  ->  E. x  e.  N.  z  <Q  [ <. x ,  1o >. ]  ~Q  )
6 simprl 520 . . . . . . . 8  |-  ( ( A  e.  P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A ) ) )  ->  z  e.  Q. )
76ad2antrr 479 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  z  e.  Q. )
8 simprr 521 . . . . . . . 8  |-  ( ( A  e.  P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A ) ) )  ->  z  e.  ( 2nd `  A ) )
98ad2antrr 479 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  z  e.  ( 2nd `  A ) )
10 simpr 109 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  z  <Q  [ <. x ,  1o >. ]  ~Q  )
11 vex 2689 . . . . . . . . 9  |-  z  e. 
_V
12 breq1 3932 . . . . . . . . 9  |-  ( l  =  z  ->  (
l  <Q  [ <. x ,  1o >. ]  ~Q  <->  z  <Q  [
<. x ,  1o >. ]  ~Q  ) )
13 ltnqex 7357 . . . . . . . . . 10  |-  { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  }  e.  _V
14 gtnqex 7358 . . . . . . . . . 10  |-  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u }  e.  _V
1513, 14op1st 6044 . . . . . . . . 9  |-  ( 1st `  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )  =  { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  }
1611, 12, 15elab2 2832 . . . . . . . 8  |-  ( z  e.  ( 1st `  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )  <->  z  <Q  [ <. x ,  1o >. ]  ~Q  )
1710, 16sylibr 133 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  z  e.  ( 1st `  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) )
18 eleq1 2202 . . . . . . . . 9  |-  ( w  =  z  ->  (
w  e.  ( 2nd `  A )  <->  z  e.  ( 2nd `  A ) ) )
19 eleq1 2202 . . . . . . . . 9  |-  ( w  =  z  ->  (
w  e.  ( 1st `  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )  <->  z  e.  ( 1st `  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) ) )
2018, 19anbi12d 464 . . . . . . . 8  |-  ( w  =  z  ->  (
( w  e.  ( 2nd `  A )  /\  w  e.  ( 1st `  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) )  <->  ( z  e.  ( 2nd `  A
)  /\  z  e.  ( 1st `  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) ) ) )
2120rspcev 2789 . . . . . . 7  |-  ( ( z  e.  Q.  /\  ( z  e.  ( 2nd `  A )  /\  z  e.  ( 1st `  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) ) )  ->  E. w  e.  Q.  ( w  e.  ( 2nd `  A )  /\  w  e.  ( 1st ` 
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) ) )
227, 9, 17, 21syl12anc 1214 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  E. w  e.  Q.  ( w  e.  ( 2nd `  A )  /\  w  e.  ( 1st ` 
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) ) )
23 simplll 522 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  A  e.  P. )
24 nnprlu 7361 . . . . . . . 8  |-  ( x  e.  N.  ->  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )
2524ad2antlr 480 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )
26 ltdfpr 7314 . . . . . . 7  |-  ( ( A  e.  P.  /\  <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )  -> 
( A  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. 
<->  E. w  e.  Q.  ( w  e.  ( 2nd `  A )  /\  w  e.  ( 1st ` 
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) ) ) )
2723, 25, 26syl2anc 408 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  ( A  <P  <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  <->  E. w  e.  Q.  ( w  e.  ( 2nd `  A )  /\  w  e.  ( 1st ` 
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) ) ) )
2822, 27mpbird 166 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  A  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )
2928ex 114 . . . 4  |-  ( ( ( A  e.  P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A ) ) )  /\  x  e.  N. )  ->  ( z  <Q  [ <. x ,  1o >. ]  ~Q  ->  A  <P 
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) )
3029reximdva 2534 . . 3  |-  ( ( A  e.  P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A ) ) )  ->  ( E. x  e.  N.  z  <Q  [ <. x ,  1o >. ]  ~Q  ->  E. x  e.  N.  A  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) )
315, 30mpd 13 . 2  |-  ( ( A  e.  P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A ) ) )  ->  E. x  e.  N.  A  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )
323, 31rexlimddv 2554 1  |-  ( A  e.  P.  ->  E. x  e.  N.  A  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1480   {cab 2125   E.wrex 2417   <.cop 3530   class class class wbr 3929   ` cfv 5123   1stc1st 6036   2ndc2nd 6037   1oc1o 6306   [cec 6427   N.cnpi 7080    ~Q ceq 7087   Q.cnq 7088    <Q cltq 7093   P.cnp 7099    <P cltp 7103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-lti 7115  df-plpq 7152  df-mpq 7153  df-enq 7155  df-nqqs 7156  df-plqqs 7157  df-mqqs 7158  df-1nqqs 7159  df-rq 7160  df-ltnqqs 7161  df-inp 7274  df-iltp 7278
This theorem is referenced by:  archsr  7590
  Copyright terms: Public domain W3C validator