Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  ax-bdsep Unicode version

Axiom ax-bdsep 10833
Description: Axiom scheme of bounded (or restricted, or Δ0) separation. It is stated with all possible disjoint variable conditions, to show that this weak form is sufficient. For the full axiom of separation, see ax-sep 3904. (Contributed by BJ, 5-Oct-2019.)
Hypothesis
Ref Expression
ax-bdsep.1  |- BOUNDED  ph
Assertion
Ref Expression
ax-bdsep  |-  A. a E. b A. x ( x  e.  b  <->  ( x  e.  a  /\  ph )
)
Distinct variable groups:    a, b, x    ph, a, b
Allowed substitution hint:    ph( x)

Detailed syntax breakdown of Axiom ax-bdsep
StepHypRef Expression
1 vx . . . . . 6  setvar  x
2 vb . . . . . 6  setvar  b
31, 2wel 1435 . . . . 5  wff  x  e.  b
4 va . . . . . . 7  setvar  a
51, 4wel 1435 . . . . . 6  wff  x  e.  a
6 wph . . . . . 6  wff  ph
75, 6wa 102 . . . . 5  wff  ( x  e.  a  /\  ph )
83, 7wb 103 . . . 4  wff  ( x  e.  b  <->  ( x  e.  a  /\  ph )
)
98, 1wal 1283 . . 3  wff  A. x
( x  e.  b  <-> 
( x  e.  a  /\  ph ) )
109, 2wex 1422 . 2  wff  E. b A. x ( x  e.  b  <->  ( x  e.  a  /\  ph )
)
1110, 4wal 1283 1  wff  A. a E. b A. x ( x  e.  b  <->  ( x  e.  a  /\  ph )
)
Colors of variables: wff set class
This axiom is referenced by:  bdsep1  10834
  Copyright terms: Public domain W3C validator