ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax0id Unicode version

Theorem ax0id 7095
Description:  0 is an identity element for real addition. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-0id 7135.

In the Metamath Proof Explorer this is not a complex number axiom but is instead proved from other axioms. That proof relies on excluded middle and it is not known whether it is possible to prove this from the other axioms without excluded middle. (Contributed by Jim Kingdon, 16-Jan-2020.) (New usage is discouraged.)

Assertion
Ref Expression
ax0id  |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )

Proof of Theorem ax0id
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-c 7038 . 2  |-  CC  =  ( R.  X.  R. )
2 oveq1 5544 . . 3  |-  ( <.
x ,  y >.  =  A  ->  ( <.
x ,  y >.  +  0 )  =  ( A  +  0 ) )
3 id 19 . . 3  |-  ( <.
x ,  y >.  =  A  ->  <. x ,  y >.  =  A )
42, 3eqeq12d 2096 . 2  |-  ( <.
x ,  y >.  =  A  ->  ( (
<. x ,  y >.  +  0 )  = 
<. x ,  y >.  <->  ( A  +  0 )  =  A ) )
5 0r 6978 . . . 4  |-  0R  e.  R.
6 addcnsr 7053 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( 0R  e.  R.  /\  0R  e.  R. )
)  ->  ( <. x ,  y >.  +  <. 0R ,  0R >. )  =  <. ( x  +R  0R ) ,  ( y  +R  0R ) >.
)
75, 5, 6mpanr12 430 . . 3  |-  ( ( x  e.  R.  /\  y  e.  R. )  ->  ( <. x ,  y
>.  +  <. 0R ,  0R >. )  =  <. (
x  +R  0R ) ,  ( y  +R  0R ) >. )
8 df-0 7039 . . . . . 6  |-  0  =  <. 0R ,  0R >.
98eqcomi 2086 . . . . 5  |-  <. 0R ,  0R >.  =  0
109a1i 9 . . . 4  |-  ( ( x  e.  R.  /\  y  e.  R. )  -> 
<. 0R ,  0R >.  =  0 )
1110oveq2d 5553 . . 3  |-  ( ( x  e.  R.  /\  y  e.  R. )  ->  ( <. x ,  y
>.  +  <. 0R ,  0R >. )  =  ( <.
x ,  y >.  +  0 ) )
12 0idsr 6995 . . . . 5  |-  ( x  e.  R.  ->  (
x  +R  0R )  =  x )
1312adantr 270 . . . 4  |-  ( ( x  e.  R.  /\  y  e.  R. )  ->  ( x  +R  0R )  =  x )
14 0idsr 6995 . . . . 5  |-  ( y  e.  R.  ->  (
y  +R  0R )  =  y )
1514adantl 271 . . . 4  |-  ( ( x  e.  R.  /\  y  e.  R. )  ->  ( y  +R  0R )  =  y )
1613, 15opeq12d 3580 . . 3  |-  ( ( x  e.  R.  /\  y  e.  R. )  -> 
<. ( x  +R  0R ) ,  ( y  +R  0R ) >.  =  <. x ,  y >. )
177, 11, 163eqtr3d 2122 . 2  |-  ( ( x  e.  R.  /\  y  e.  R. )  ->  ( <. x ,  y
>.  +  0 )  = 
<. x ,  y >.
)
181, 4, 17optocl 4436 1  |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1285    e. wcel 1434   <.cop 3403  (class class class)co 5537   R.cnr 6538   0Rc0r 6539    +R cplr 6542   CCcc 7030   0cc0 7032    + caddc 7035
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3895  ax-sep 3898  ax-nul 3906  ax-pow 3950  ax-pr 3966  ax-un 4190  ax-setind 4282  ax-iinf 4331
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3253  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3604  df-int 3639  df-iun 3682  df-br 3788  df-opab 3842  df-mpt 3843  df-tr 3878  df-eprel 4046  df-id 4050  df-po 4053  df-iso 4054  df-iord 4123  df-on 4125  df-suc 4128  df-iom 4334  df-xp 4371  df-rel 4372  df-cnv 4373  df-co 4374  df-dm 4375  df-rn 4376  df-res 4377  df-ima 4378  df-iota 4891  df-fun 4928  df-fn 4929  df-f 4930  df-f1 4931  df-fo 4932  df-f1o 4933  df-fv 4934  df-ov 5540  df-oprab 5541  df-mpt2 5542  df-1st 5792  df-2nd 5793  df-recs 5948  df-irdg 6013  df-1o 6059  df-2o 6060  df-oadd 6063  df-omul 6064  df-er 6165  df-ec 6167  df-qs 6171  df-ni 6545  df-pli 6546  df-mi 6547  df-lti 6548  df-plpq 6585  df-mpq 6586  df-enq 6588  df-nqqs 6589  df-plqqs 6590  df-mqqs 6591  df-1nqqs 6592  df-rq 6593  df-ltnqqs 6594  df-enq0 6665  df-nq0 6666  df-0nq0 6667  df-plq0 6668  df-mq0 6669  df-inp 6707  df-i1p 6708  df-iplp 6709  df-enr 6954  df-nr 6955  df-plr 6956  df-0r 6959  df-c 7038  df-0 7039  df-add 7043
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator