ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax10o Unicode version

Theorem ax10o 1575
Description: Show that ax-10o 1576 can be derived from ax-10 1388. An open problem is whether this theorem can be derived from ax-10 1388 and the others when ax-11 1389 is replaced with ax-11o 1654. See theorem ax10 1577 for the rederivation of ax-10 1388 from ax10o 1575.

Normally, ax10o 1575 should be used rather than ax-10o 1576, except by theorems specifically studying the latter's properties.

Assertion
Ref Expression
ax10o

Proof of Theorem ax10o
StepHypRef Expression
1 ax-10 1388 . 2
2 ax-11 1389 . . . 4
32equcoms 1566 . . 3
43a4s 1433 . 2
5 pm2.27 34 . . 3
65al2imi 1348 . 2
71, 4, 6sylsyld 51 1
Colors of variables: wff set class
Syntax hints:   wi 4  wal 1335
This theorem is referenced by:  hbae  1578  dvelimfALT  1585  dral1  1586  hbsb4  1686  hbeu  1840  hbeud  1841
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 8  ax-ia1 98  ax-5 1336  ax-gen 1339  ax-ie2 1376  ax-8 1387  ax-10 1388  ax-11 1389  ax-4 1392  ax-17 1402  ax-i9 1417
This theorem depends on definitions:  df-bi 109
  Copyright terms: Public domain W3C validator