ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax10o Unicode version

Theorem ax10o 1493
Description: Show that ax-10o 1494 can be derived from ax-10 1329. An open problem is whether this theorem can be derived from ax-10 1329 and the others when ax-11 1330 is replaced with ax-11o 1590. See theorem ax10 1495 for the rederivation of ax-10 1329 from ax10o 1493.

Normally, ax10o 1493 should be used rather than ax-10o 1494, except by theorems specifically studying the latter's properties. (Contributed by NM, 16-May-2008.)

Assertion
Ref Expression
ax10o

Proof of Theorem ax10o
StepHypRef Expression
1 ax-10 1329 . 2
2 ax-11 1330 . . . 4
32equcoms 1484 . . 3
43a4s 1362 . 2
5 pm2.27 33 . . 3
65al2imi 1278 . 2
71, 4, 6sylsyld 50 1
Colors of variables: wff set class
Syntax hints:   wi 4  wal 1266
This theorem is referenced by:  hbae  1496  dral1  1507  hbeu  2086  hbeud  2087
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 97  ax-5 1267  ax-gen 1269  ax-ie2 1315  ax-8 1328  ax-10 1329  ax-11 1330  ax-4 1333  ax-17 1350  ax-i9 1354
This theorem depends on definitions:  df-bi 108
  Copyright terms: Public domain W3C validator