ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax11 Unicode version

Theorem ax11 1655
Description: Rederivation of axiom ax-11 1389 from the orginal version, ax-11o 1654. See theorem ax11o 1653 for the derivation of ax-11o 1654 from ax-11 1389.

This theorem should not be referenced in any proof. Instead, use ax-11 1389 above so that uses of ax-11 1389 can be more easily identified.

Assertion
Ref Expression
ax11

Proof of Theorem ax11
StepHypRef Expression
1 biidd 160 . . . . 5
21dral1 1586 . . . 4
3 ax-1 5 . . . . 5
43alimi 1345 . . . 4
52, 4syl6bir 152 . . 3
65a1d 21 . 2
7 ax-4 1392 . . 3
8 ax-11o 1654 . . 3
97, 8syl7 62 . 2
106, 9pm2.61i 743 1
Colors of variables: wff set class
Syntax hints:   wn 3   wi 4  wal 1335
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-ia1 98  ax-ia2 99  ax-ia3 100  ax-in1 527  ax-in2 528  ax-io 607  ax-5 1336  ax-7 1338  ax-gen 1339  ax-ie2 1376  ax-8 1387  ax-10 1388  ax-11 1389  ax-i12 1391  ax-4 1392  ax-17 1402  ax-i9 1417  ax-ial 1430  ax-11o 1654
This theorem depends on definitions:  df-bi 109
  Copyright terms: Public domain W3C validator