ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax11o Unicode version

Theorem ax11o 1744
Description: Derivation of set.mm's original ax-11o 1745 from the shorter ax-11 1438 that has replaced it.

An open problem is whether this theorem can be proved without relying on ax-16 1736 or ax-17 1460.

Normally, ax11o 1744 should be used rather than ax-11o 1745, except by theorems specifically studying the latter's properties. (Contributed by NM, 3-Feb-2007.)

Assertion
Ref Expression
ax11o  |-  ( -. 
A. x  x  =  y  ->  ( x  =  y  ->  ( ph  ->  A. x ( x  =  y  ->  ph )
) ) )

Proof of Theorem ax11o
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ax-11 1438 . 2  |-  ( x  =  z  ->  ( A. z ph  ->  A. x
( x  =  z  ->  ph ) ) )
21ax11a2 1743 1  |-  ( -. 
A. x  x  =  y  ->  ( x  =  y  ->  ( ph  ->  A. x ( x  =  y  ->  ph )
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1283
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468
This theorem depends on definitions:  df-bi 115  df-nf 1391  df-sb 1687
This theorem is referenced by:  ax11b  1748  equs5  1751
  Copyright terms: Public domain W3C validator