ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax11o Unicode version

Theorem ax11o 1511
Description: Derivation of set.mm's original ax-11o 1512 from the shorter ax-11 1268 that has replaced it.

An open problem is whether this theorem can be proved without relying on ax-16 1503 or ax-17 1285.

Another open problem is whether this theorem can be proved without relying on ax-12 1272 (see note in a12study 1850).

Theorem ax11 1834 shows the reverse derivation of ax-11 1268 from ax-11o 1512.

Normally, ax11o 1511 should be used rather than ax-11o 1512, except by theorems specifically studying the latter's properties. (Contributed by NM, 3-Feb-2007.)

Assertion
Ref Expression
ax11o

Proof of Theorem ax11o
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 ax-11 1268 . 2
21ax11a2 1510 1
Colors of variables: wff set class
Syntax hints:   wn 3   wi 4  wal 1204
This theorem is referenced by:  equs5  1518
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 97  ax-ia2 98  ax-ia3 99  ax-in2 527  ax-io 606  ax-5 1205  ax-7 1206  ax-gen 1207  ax-ie1 1252  ax-ie2 1253  ax-8 1266  ax-10 1267  ax-11 1268  ax-i12 1269  ax-4 1270  ax-17 1285  ax-i9 1289  ax-ial 1294
This theorem depends on definitions:  df-bi 108  df-sb 1458
  Copyright terms: Public domain W3C validator