ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax11o Unicode version

Theorem ax11o 1653
Description: Derivation of set.mm's original ax-11o 1654 from the shorter ax-11 1389 that has replaced it.

An open problem is whether this theorem can be proved without relying on ax-16 1644 or ax-17 1402.

Another open problem is whether this theorem can be proved without relying on ax-12 1393 (see note in a12study 1825).

Theorem ax11 1655 shows the reverse derivation of ax-11 1389 from ax-11o 1654.

Normally, ax11o 1653 should be used rather than ax-11o 1654, except by theorems specifically studying the latter's properties.

Assertion
Ref Expression
ax11o

Proof of Theorem ax11o
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 ax-11 1389 . 2
21ax11a2 1652 1
Colors of variables: wff set class
Syntax hints:   wn 3   wi 4  wal 1335
This theorem is referenced by:  equs5  1657  ax11v  1703
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-ia1 98  ax-ia2 99  ax-ia3 100  ax-in1 527  ax-in2 528  ax-io 607  ax-5 1336  ax-6 1337  ax-7 1338  ax-gen 1339  ax-ie1 1375  ax-ie2 1376  ax-8 1387  ax-10 1388  ax-11 1389  ax-i12 1391  ax-4 1392  ax-17 1402  ax-i9 1417  ax-ial 1430  ax-i5r 1431
This theorem depends on definitions:  df-bi 109
  Copyright terms: Public domain W3C validator