ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax11v Unicode version

Theorem ax11v 1703
Description: This is a version of ax-11o 1654 when the variables are distinct. Axiom (C8) of [Monk2] p. 105. See theorem ax11v2 1651 for the rederivation of ax-11o 1654 from this theorem.
Assertion
Ref Expression
ax11v
Distinct variable group:   ,
Allowed substitution hints:   (,)

Proof of Theorem ax11v
StepHypRef Expression
1 ax-1 5 . . . 4
2 ax-16 1644 . . . 4
31, 2syl5 27 . . 3
43a1d 21 . 2
5 ax11o 1653 . 2
64, 5pm2.61i 743 1
Colors of variables: wff set class
Syntax hints:   wi 4  wal 1335
This theorem is referenced by:  sb56  1704
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-ia1 98  ax-ia2 99  ax-ia3 100  ax-in1 527  ax-in2 528  ax-io 607  ax-5 1336  ax-6 1337  ax-7 1338  ax-gen 1339  ax-ie1 1375  ax-ie2 1376  ax-8 1387  ax-10 1388  ax-11 1389  ax-i12 1391  ax-4 1392  ax-17 1402  ax-i9 1417  ax-ial 1430  ax-i5r 1431  ax-16 1644
This theorem depends on definitions:  df-bi 109
  Copyright terms: Public domain W3C validator