ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axarch Unicode version

Theorem axarch 7119
Description: Archimedean axiom. The Archimedean property is more naturally stated once we have defined  NN. Unless we find another way to state it, we'll just use the right hand side of dfnn2 8108 in stating what we mean by "natural number" in the context of this axiom.

This construction-dependent theorem should not be referenced directly; instead, use ax-arch 7157. (Contributed by Jim Kingdon, 22-Apr-2020.) (New usage is discouraged.)

Assertion
Ref Expression
axarch  |-  ( A  e.  RR  ->  E. n  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } A  <RR  n )
Distinct variable group:    A, n, x, y

Proof of Theorem axarch
Dummy variables  l  u  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 7059 . . 3  |-  ( A  e.  RR  <->  E. z  e.  R.  <. z ,  0R >.  =  A )
21biimpi 118 . 2  |-  ( A  e.  RR  ->  E. z  e.  R.  <. z ,  0R >.  =  A )
3 archsr 7020 . . . 4  |-  ( z  e.  R.  ->  E. w  e.  N.  z  <R  [ <. (
<. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
43ad2antrl 474 . . 3  |-  ( ( A  e.  RR  /\  ( z  e.  R.  /\ 
<. z ,  0R >.  =  A ) )  ->  E. w  e.  N.  z  <R  [ <. ( <. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
5 simplrr 503 . . . . 5  |-  ( ( ( A  e.  RR  /\  ( z  e.  R.  /\ 
<. z ,  0R >.  =  A ) )  /\  ( w  e.  N.  /\  z  <R  [ <. ( <. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
)  ->  <. z ,  0R >.  =  A
)
6 simprr 499 . . . . . 6  |-  ( ( ( A  e.  RR  /\  ( z  e.  R.  /\ 
<. z ,  0R >.  =  A ) )  /\  ( w  e.  N.  /\  z  <R  [ <. ( <. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
)  ->  z  <R  [
<. ( <. { l  |  l  <Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
7 ltresr 7069 . . . . . 6  |-  ( <.
z ,  0R >.  <RR  <. [ <. ( <. { l  |  l  <Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. 
<->  z  <R  [ <. ( <. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
86, 7sylibr 132 . . . . 5  |-  ( ( ( A  e.  RR  /\  ( z  e.  R.  /\ 
<. z ,  0R >.  =  A ) )  /\  ( w  e.  N.  /\  z  <R  [ <. ( <. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
)  ->  <. z ,  0R >.  <RR  <. [ <. (
<. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
95, 8eqbrtrrd 3815 . . . 4  |-  ( ( ( A  e.  RR  /\  ( z  e.  R.  /\ 
<. z ,  0R >.  =  A ) )  /\  ( w  e.  N.  /\  z  <R  [ <. ( <. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
)  ->  A  <RR  <. [ <. ( <. { l  |  l  <Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
10 pitonn 7078 . . . . . 6  |-  ( w  e.  N.  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } )
1110ad2antrl 474 . . . . 5  |-  ( ( ( A  e.  RR  /\  ( z  e.  R.  /\ 
<. z ,  0R >.  =  A ) )  /\  ( w  e.  N.  /\  z  <R  [ <. ( <. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
)  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } )
12 simpr 108 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  ( z  e.  R.  /\  <. z ,  0R >.  =  A ) )  /\  (
w  e.  N.  /\  z  <R  [ <. ( <. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
)  /\  n  =  <. [ <. ( <. { l  |  l  <Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  ->  n  =  <. [ <. ( <. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
1312breq2d 3805 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  ( z  e.  R.  /\  <. z ,  0R >.  =  A ) )  /\  (
w  e.  N.  /\  z  <R  [ <. ( <. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
)  /\  n  =  <. [ <. ( <. { l  |  l  <Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  ->  ( A  <RR  n  <->  A  <RR  <. [ <. ( <. { l  |  l  <Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. ) )
1411, 13rspcedv 2706 . . . 4  |-  ( ( ( A  e.  RR  /\  ( z  e.  R.  /\ 
<. z ,  0R >.  =  A ) )  /\  ( w  e.  N.  /\  z  <R  [ <. ( <. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
)  ->  ( A  <RR 
<. [ <. ( <. { l  |  l  <Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  E. n  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } A  <RR  n ) )
159, 14mpd 13 . . 3  |-  ( ( ( A  e.  RR  /\  ( z  e.  R.  /\ 
<. z ,  0R >.  =  A ) )  /\  ( w  e.  N.  /\  z  <R  [ <. ( <. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
)  ->  E. n  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } A  <RR  n )
164, 15rexlimddv 2482 . 2  |-  ( ( A  e.  RR  /\  ( z  e.  R.  /\ 
<. z ,  0R >.  =  A ) )  ->  E. n  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } A  <RR  n )
172, 16rexlimddv 2482 1  |-  ( A  e.  RR  ->  E. n  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } A  <RR  n )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1285    e. wcel 1434   {cab 2068   A.wral 2349   E.wrex 2350   <.cop 3409   |^|cint 3644   class class class wbr 3793  (class class class)co 5543   1oc1o 6058   [cec 6170   N.cnpi 6524    ~Q ceq 6531    <Q cltq 6537   1Pc1p 6544    +P. cpp 6545    ~R cer 6548   R.cnr 6549   0Rc0r 6550    <R cltr 6555   RRcr 7042   1c1 7044    + caddc 7046    <RR cltrr 7047
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3901  ax-sep 3904  ax-nul 3912  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-iinf 4337
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-tr 3884  df-eprel 4052  df-id 4056  df-po 4059  df-iso 4060  df-iord 4129  df-on 4131  df-suc 4134  df-iom 4340  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-1st 5798  df-2nd 5799  df-recs 5954  df-irdg 6019  df-1o 6065  df-2o 6066  df-oadd 6069  df-omul 6070  df-er 6172  df-ec 6174  df-qs 6178  df-ni 6556  df-pli 6557  df-mi 6558  df-lti 6559  df-plpq 6596  df-mpq 6597  df-enq 6599  df-nqqs 6600  df-plqqs 6601  df-mqqs 6602  df-1nqqs 6603  df-rq 6604  df-ltnqqs 6605  df-enq0 6676  df-nq0 6677  df-0nq0 6678  df-plq0 6679  df-mq0 6680  df-inp 6718  df-i1p 6719  df-iplp 6720  df-iltp 6722  df-enr 6965  df-nr 6966  df-plr 6967  df-ltr 6969  df-0r 6970  df-1r 6971  df-c 7049  df-1 7051  df-r 7053  df-add 7054  df-lt 7056
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator