ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axcaucvglemcl Unicode version

Theorem axcaucvglemcl 7112
Description: Lemma for axcaucvg 7117. Mapping to  N. and  R.. (Contributed by Jim Kingdon, 10-Jul-2021.)
Hypotheses
Ref Expression
axcaucvglemcl.n  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
axcaucvglemcl.f  |-  ( ph  ->  F : N --> RR )
Assertion
Ref Expression
axcaucvglemcl  |-  ( (
ph  /\  J  e.  N. )  ->  ( iota_ z  e.  R.  ( F `
 <. [ <. ( <. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )  e.  R. )
Distinct variable groups:    z, F    J, l, u, z    y, l, u    x, y
Allowed substitution hints:    ph( x, y, z, u, l)    F( x, y, u, l)    J( x, y)    N( x, y, z, u, l)

Proof of Theorem axcaucvglemcl
StepHypRef Expression
1 pitonn 7067 . . . . . 6  |-  ( J  e.  N.  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } )
2 axcaucvglemcl.n . . . . . 6  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
31, 2syl6eleqr 2173 . . . . 5  |-  ( J  e.  N.  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  N )
4 axcaucvglemcl.f . . . . . 6  |-  ( ph  ->  F : N --> RR )
54ffvelrnda 5328 . . . . 5  |-  ( (
ph  /\  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  N )  ->  ( F `  <. [ <. ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  e.  RR )
63, 5sylan2 280 . . . 4  |-  ( (
ph  /\  J  e.  N. )  ->  ( F `
 <. [ <. ( <. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  e.  RR )
7 elrealeu 7049 . . . 4  |-  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  e.  RR  <->  E! z  e.  R.  <. z ,  0R >.  =  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. ) )
86, 7sylib 120 . . 3  |-  ( (
ph  /\  J  e.  N. )  ->  E! z  e.  R.  <. z ,  0R >.  =  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. ) )
9 eqcom 2084 . . . 4  |-  ( <.
z ,  0R >.  =  ( F `  <. [
<. ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <->  ( F `  <. [ <. ( <. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
109reubii 2540 . . 3  |-  ( E! z  e.  R.  <. z ,  0R >.  =  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <->  E! z  e.  R.  ( F `  <. [ <. ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
118, 10sylib 120 . 2  |-  ( (
ph  /\  J  e.  N. )  ->  E! z  e.  R.  ( F `
 <. [ <. ( <. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
12 riotacl 5507 . 2  |-  ( E! z  e.  R.  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >.  ->  ( iota_ z  e.  R.  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )  e.  R. )
1311, 12syl 14 1  |-  ( (
ph  /\  J  e.  N. )  ->  ( iota_ z  e.  R.  ( F `
 <. [ <. ( <. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )  e.  R. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1285    e. wcel 1434   {cab 2068   A.wral 2349   E!wreu 2351   <.cop 3403   |^|cint 3638   class class class wbr 3787   -->wf 4922   ` cfv 4926   iota_crio 5492  (class class class)co 5537   1oc1o 6052   [cec 6163   N.cnpi 6513    ~Q ceq 6520    <Q cltq 6526   1Pc1p 6533    +P. cpp 6534    ~R cer 6537   R.cnr 6538   0Rc0r 6539   RRcr 7031   1c1 7033    + caddc 7035
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3895  ax-sep 3898  ax-nul 3906  ax-pow 3950  ax-pr 3966  ax-un 4190  ax-setind 4282  ax-iinf 4331
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-reu 2356  df-rmo 2357  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3253  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3604  df-int 3639  df-iun 3682  df-br 3788  df-opab 3842  df-mpt 3843  df-tr 3878  df-eprel 4046  df-id 4050  df-po 4053  df-iso 4054  df-iord 4123  df-on 4125  df-suc 4128  df-iom 4334  df-xp 4371  df-rel 4372  df-cnv 4373  df-co 4374  df-dm 4375  df-rn 4376  df-res 4377  df-ima 4378  df-iota 4891  df-fun 4928  df-fn 4929  df-f 4930  df-f1 4931  df-fo 4932  df-f1o 4933  df-fv 4934  df-riota 5493  df-ov 5540  df-oprab 5541  df-mpt2 5542  df-1st 5792  df-2nd 5793  df-recs 5948  df-irdg 6013  df-1o 6059  df-2o 6060  df-oadd 6063  df-omul 6064  df-er 6165  df-ec 6167  df-qs 6171  df-ni 6545  df-pli 6546  df-mi 6547  df-lti 6548  df-plpq 6585  df-mpq 6586  df-enq 6588  df-nqqs 6589  df-plqqs 6590  df-mqqs 6591  df-1nqqs 6592  df-rq 6593  df-ltnqqs 6594  df-enq0 6665  df-nq0 6666  df-0nq0 6667  df-plq0 6668  df-mq0 6669  df-inp 6707  df-i1p 6708  df-iplp 6709  df-enr 6954  df-nr 6955  df-plr 6956  df-0r 6959  df-1r 6960  df-c 7038  df-1 7040  df-r 7042  df-add 7043
This theorem is referenced by:  axcaucvglemf  7113  axcaucvglemval  7114
  Copyright terms: Public domain W3C validator