ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axdistr Unicode version

Theorem axdistr 7006
Description: Distributive law for complex numbers (left-distributivity). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-distr 7046 be used later. Instead, use adddi 7071. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
axdistr  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  +  C ) )  =  ( ( A  x.  B )  +  ( A  x.  C ) ) )

Proof of Theorem axdistr
Dummy variables  x  y  z  w  v  u  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcnqs 6975 . 2  |-  CC  =  ( ( R.  X.  R. ) /. `'  _E  )
2 addcnsrec 6976 . 2  |-  ( ( ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( [ <. z ,  w >. ] `'  _E  +  [ <. v ,  u >. ] `'  _E  )  =  [ <. ( z  +R  v
) ,  ( w  +R  u ) >. ] `'  _E  )
3 mulcnsrec 6977 . 2  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( ( z  +R  v )  e.  R.  /\  ( w  +R  u
)  e.  R. )
)  ->  ( [ <. x ,  y >. ] `'  _E  x.  [ <. ( z  +R  v ) ,  ( w  +R  u )
>. ] `'  _E  )  =  [ <. ( ( x  .R  ( z  +R  v ) )  +R  ( -1R  .R  (
y  .R  ( w  +R  u ) ) ) ) ,  ( ( y  .R  ( z  +R  v ) )  +R  ( x  .R  ( w  +R  u
) ) ) >. ] `'  _E  )
4 mulcnsrec 6977 . 2  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( [ <. x ,  y >. ] `'  _E  x.  [ <. z ,  w >. ] `'  _E  )  =  [ <. ( ( x  .R  z )  +R  ( -1R  .R  (
y  .R  w )
) ) ,  ( ( y  .R  z
)  +R  ( x  .R  w ) )
>. ] `'  _E  )
5 mulcnsrec 6977 . 2  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( [ <. x ,  y >. ] `'  _E  x.  [ <. v ,  u >. ] `'  _E  )  =  [ <. ( ( x  .R  v )  +R  ( -1R  .R  (
y  .R  u )
) ) ,  ( ( y  .R  v
)  +R  ( x  .R  u ) )
>. ] `'  _E  )
6 addcnsrec 6976 . 2  |-  ( ( ( ( ( x  .R  z )  +R  ( -1R  .R  (
y  .R  w )
) )  e.  R.  /\  ( ( y  .R  z )  +R  (
x  .R  w )
)  e.  R. )  /\  ( ( ( x  .R  v )  +R  ( -1R  .R  (
y  .R  u )
) )  e.  R.  /\  ( ( y  .R  v )  +R  (
x  .R  u )
)  e.  R. )
)  ->  ( [ <. ( ( x  .R  z )  +R  ( -1R  .R  ( y  .R  w ) ) ) ,  ( ( y  .R  z )  +R  ( x  .R  w
) ) >. ] `'  _E  +  [ <. (
( x  .R  v
)  +R  ( -1R 
.R  ( y  .R  u ) ) ) ,  ( ( y  .R  v )  +R  ( x  .R  u
) ) >. ] `'  _E  )  =  [ <. ( ( ( x  .R  z )  +R  ( -1R  .R  (
y  .R  w )
) )  +R  (
( x  .R  v
)  +R  ( -1R 
.R  ( y  .R  u ) ) ) ) ,  ( ( ( y  .R  z
)  +R  ( x  .R  w ) )  +R  ( ( y  .R  v )  +R  ( x  .R  u
) ) ) >. ] `'  _E  )
7 addclsr 6896 . . . 4  |-  ( ( z  e.  R.  /\  v  e.  R. )  ->  ( z  +R  v
)  e.  R. )
8 addclsr 6896 . . . 4  |-  ( ( w  e.  R.  /\  u  e.  R. )  ->  ( w  +R  u
)  e.  R. )
97, 8anim12i 325 . . 3  |-  ( ( ( z  e.  R.  /\  v  e.  R. )  /\  ( w  e.  R.  /\  u  e.  R. )
)  ->  ( (
z  +R  v )  e.  R.  /\  (
w  +R  u )  e.  R. ) )
109an4s 530 . 2  |-  ( ( ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
z  +R  v )  e.  R.  /\  (
w  +R  u )  e.  R. ) )
11 mulclsr 6897 . . . . 5  |-  ( ( x  e.  R.  /\  z  e.  R. )  ->  ( x  .R  z
)  e.  R. )
12 m1r 6895 . . . . . 6  |-  -1R  e.  R.
13 mulclsr 6897 . . . . . 6  |-  ( ( y  e.  R.  /\  w  e.  R. )  ->  ( y  .R  w
)  e.  R. )
14 mulclsr 6897 . . . . . 6  |-  ( ( -1R  e.  R.  /\  ( y  .R  w
)  e.  R. )  ->  ( -1R  .R  (
y  .R  w )
)  e.  R. )
1512, 13, 14sylancr 399 . . . . 5  |-  ( ( y  e.  R.  /\  w  e.  R. )  ->  ( -1R  .R  (
y  .R  w )
)  e.  R. )
16 addclsr 6896 . . . . 5  |-  ( ( ( x  .R  z
)  e.  R.  /\  ( -1R  .R  ( y  .R  w ) )  e.  R. )  -> 
( ( x  .R  z )  +R  ( -1R  .R  ( y  .R  w ) ) )  e.  R. )
1711, 15, 16syl2an 277 . . . 4  |-  ( ( ( x  e.  R.  /\  z  e.  R. )  /\  ( y  e.  R.  /\  w  e.  R. )
)  ->  ( (
x  .R  z )  +R  ( -1R  .R  (
y  .R  w )
) )  e.  R. )
1817an4s 530 . . 3  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( (
x  .R  z )  +R  ( -1R  .R  (
y  .R  w )
) )  e.  R. )
19 mulclsr 6897 . . . . 5  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( y  .R  z
)  e.  R. )
20 mulclsr 6897 . . . . 5  |-  ( ( x  e.  R.  /\  w  e.  R. )  ->  ( x  .R  w
)  e.  R. )
21 addclsr 6896 . . . . 5  |-  ( ( ( y  .R  z
)  e.  R.  /\  ( x  .R  w
)  e.  R. )  ->  ( ( y  .R  z )  +R  (
x  .R  w )
)  e.  R. )
2219, 20, 21syl2anr 278 . . . 4  |-  ( ( ( x  e.  R.  /\  w  e.  R. )  /\  ( y  e.  R.  /\  z  e.  R. )
)  ->  ( (
y  .R  z )  +R  ( x  .R  w
) )  e.  R. )
2322an42s 531 . . 3  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( (
y  .R  z )  +R  ( x  .R  w
) )  e.  R. )
2418, 23jca 294 . 2  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( (
( x  .R  z
)  +R  ( -1R 
.R  ( y  .R  w ) ) )  e.  R.  /\  (
( y  .R  z
)  +R  ( x  .R  w ) )  e.  R. ) )
25 mulclsr 6897 . . . . 5  |-  ( ( x  e.  R.  /\  v  e.  R. )  ->  ( x  .R  v
)  e.  R. )
26 mulclsr 6897 . . . . . 6  |-  ( ( y  e.  R.  /\  u  e.  R. )  ->  ( y  .R  u
)  e.  R. )
27 mulclsr 6897 . . . . . 6  |-  ( ( -1R  e.  R.  /\  ( y  .R  u
)  e.  R. )  ->  ( -1R  .R  (
y  .R  u )
)  e.  R. )
2812, 26, 27sylancr 399 . . . . 5  |-  ( ( y  e.  R.  /\  u  e.  R. )  ->  ( -1R  .R  (
y  .R  u )
)  e.  R. )
29 addclsr 6896 . . . . 5  |-  ( ( ( x  .R  v
)  e.  R.  /\  ( -1R  .R  ( y  .R  u ) )  e.  R. )  -> 
( ( x  .R  v )  +R  ( -1R  .R  ( y  .R  u ) ) )  e.  R. )
3025, 28, 29syl2an 277 . . . 4  |-  ( ( ( x  e.  R.  /\  v  e.  R. )  /\  ( y  e.  R.  /\  u  e.  R. )
)  ->  ( (
x  .R  v )  +R  ( -1R  .R  (
y  .R  u )
) )  e.  R. )
3130an4s 530 . . 3  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
x  .R  v )  +R  ( -1R  .R  (
y  .R  u )
) )  e.  R. )
32 mulclsr 6897 . . . . 5  |-  ( ( y  e.  R.  /\  v  e.  R. )  ->  ( y  .R  v
)  e.  R. )
33 mulclsr 6897 . . . . 5  |-  ( ( x  e.  R.  /\  u  e.  R. )  ->  ( x  .R  u
)  e.  R. )
34 addclsr 6896 . . . . 5  |-  ( ( ( y  .R  v
)  e.  R.  /\  ( x  .R  u
)  e.  R. )  ->  ( ( y  .R  v )  +R  (
x  .R  u )
)  e.  R. )
3532, 33, 34syl2anr 278 . . . 4  |-  ( ( ( x  e.  R.  /\  u  e.  R. )  /\  ( y  e.  R.  /\  v  e.  R. )
)  ->  ( (
y  .R  v )  +R  ( x  .R  u
) )  e.  R. )
3635an42s 531 . . 3  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
y  .R  v )  +R  ( x  .R  u
) )  e.  R. )
3731, 36jca 294 . 2  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
( x  .R  v
)  +R  ( -1R 
.R  ( y  .R  u ) ) )  e.  R.  /\  (
( y  .R  v
)  +R  ( x  .R  u ) )  e.  R. ) )
38 simp1l 939 . . . . 5  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  x  e.  R. )
39 simp2l 941 . . . . 5  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  z  e.  R. )
40 simp3l 943 . . . . 5  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  v  e.  R. )
41 distrsrg 6902 . . . . 5  |-  ( ( x  e.  R.  /\  z  e.  R.  /\  v  e.  R. )  ->  (
x  .R  ( z  +R  v ) )  =  ( ( x  .R  z )  +R  (
x  .R  v )
) )
4238, 39, 40, 41syl3anc 1146 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( x  .R  ( z  +R  v
) )  =  ( ( x  .R  z
)  +R  ( x  .R  v ) ) )
43 simp1r 940 . . . . . . 7  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  y  e.  R. )
44 simp2r 942 . . . . . . 7  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  w  e.  R. )
45 simp3r 944 . . . . . . 7  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  u  e.  R. )
46 distrsrg 6902 . . . . . . 7  |-  ( ( y  e.  R.  /\  w  e.  R.  /\  u  e.  R. )  ->  (
y  .R  ( w  +R  u ) )  =  ( ( y  .R  w )  +R  (
y  .R  u )
) )
4743, 44, 45, 46syl3anc 1146 . . . . . 6  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( y  .R  ( w  +R  u
) )  =  ( ( y  .R  w
)  +R  ( y  .R  u ) ) )
4847oveq2d 5556 . . . . 5  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( -1R  .R  ( y  .R  (
w  +R  u ) ) )  =  ( -1R  .R  ( ( y  .R  w )  +R  ( y  .R  u ) ) ) )
4912a1i 9 . . . . . 6  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  -1R  e.  R. )
5043, 44, 13syl2anc 397 . . . . . 6  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( y  .R  w )  e.  R. )
5143, 45, 26syl2anc 397 . . . . . 6  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( y  .R  u )  e.  R. )
52 distrsrg 6902 . . . . . 6  |-  ( ( -1R  e.  R.  /\  ( y  .R  w
)  e.  R.  /\  ( y  .R  u
)  e.  R. )  ->  ( -1R  .R  (
( y  .R  w
)  +R  ( y  .R  u ) ) )  =  ( ( -1R  .R  ( y  .R  w ) )  +R  ( -1R  .R  ( y  .R  u
) ) ) )
5349, 50, 51, 52syl3anc 1146 . . . . 5  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( -1R  .R  ( ( y  .R  w )  +R  (
y  .R  u )
) )  =  ( ( -1R  .R  (
y  .R  w )
)  +R  ( -1R 
.R  ( y  .R  u ) ) ) )
5448, 53eqtrd 2088 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( -1R  .R  ( y  .R  (
w  +R  u ) ) )  =  ( ( -1R  .R  (
y  .R  w )
)  +R  ( -1R 
.R  ( y  .R  u ) ) ) )
5542, 54oveq12d 5558 . . 3  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
x  .R  ( z  +R  v ) )  +R  ( -1R  .R  (
y  .R  ( w  +R  u ) ) ) )  =  ( ( ( x  .R  z
)  +R  ( x  .R  v ) )  +R  ( ( -1R 
.R  ( y  .R  w ) )  +R  ( -1R  .R  (
y  .R  u )
) ) ) )
5638, 39, 11syl2anc 397 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( x  .R  z )  e.  R. )
5738, 40, 25syl2anc 397 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( x  .R  v )  e.  R. )
5812, 50, 14sylancr 399 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( -1R  .R  ( y  .R  w
) )  e.  R. )
59 addcomsrg 6898 . . . . 5  |-  ( ( f  e.  R.  /\  g  e.  R. )  ->  ( f  +R  g
)  =  ( g  +R  f ) )
6059adantl 266 . . . 4  |-  ( ( ( ( x  e. 
R.  /\  y  e.  R. )  /\  (
z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  /\  ( f  e.  R.  /\  g  e. 
R. ) )  -> 
( f  +R  g
)  =  ( g  +R  f ) )
61 addasssrg 6899 . . . . 5  |-  ( ( f  e.  R.  /\  g  e.  R.  /\  h  e.  R. )  ->  (
( f  +R  g
)  +R  h )  =  ( f  +R  ( g  +R  h
) ) )
6261adantl 266 . . . 4  |-  ( ( ( ( x  e. 
R.  /\  y  e.  R. )  /\  (
z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  /\  ( f  e.  R.  /\  g  e. 
R.  /\  h  e.  R. ) )  ->  (
( f  +R  g
)  +R  h )  =  ( f  +R  ( g  +R  h
) ) )
6312, 51, 27sylancr 399 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( -1R  .R  ( y  .R  u
) )  e.  R. )
64 addclsr 6896 . . . . 5  |-  ( ( f  e.  R.  /\  g  e.  R. )  ->  ( f  +R  g
)  e.  R. )
6564adantl 266 . . . 4  |-  ( ( ( ( x  e. 
R.  /\  y  e.  R. )  /\  (
z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  /\  ( f  e.  R.  /\  g  e. 
R. ) )  -> 
( f  +R  g
)  e.  R. )
6656, 57, 58, 60, 62, 63, 65caov4d 5713 . . 3  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
( x  .R  z
)  +R  ( x  .R  v ) )  +R  ( ( -1R 
.R  ( y  .R  w ) )  +R  ( -1R  .R  (
y  .R  u )
) ) )  =  ( ( ( x  .R  z )  +R  ( -1R  .R  (
y  .R  w )
) )  +R  (
( x  .R  v
)  +R  ( -1R 
.R  ( y  .R  u ) ) ) ) )
6755, 66eqtrd 2088 . 2  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
x  .R  ( z  +R  v ) )  +R  ( -1R  .R  (
y  .R  ( w  +R  u ) ) ) )  =  ( ( ( x  .R  z
)  +R  ( -1R 
.R  ( y  .R  w ) ) )  +R  ( ( x  .R  v )  +R  ( -1R  .R  (
y  .R  u )
) ) ) )
68 distrsrg 6902 . . . . 5  |-  ( ( y  e.  R.  /\  z  e.  R.  /\  v  e.  R. )  ->  (
y  .R  ( z  +R  v ) )  =  ( ( y  .R  z )  +R  (
y  .R  v )
) )
6943, 39, 40, 68syl3anc 1146 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( y  .R  ( z  +R  v
) )  =  ( ( y  .R  z
)  +R  ( y  .R  v ) ) )
70 distrsrg 6902 . . . . 5  |-  ( ( x  e.  R.  /\  w  e.  R.  /\  u  e.  R. )  ->  (
x  .R  ( w  +R  u ) )  =  ( ( x  .R  w )  +R  (
x  .R  u )
) )
7138, 44, 45, 70syl3anc 1146 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( x  .R  ( w  +R  u
) )  =  ( ( x  .R  w
)  +R  ( x  .R  u ) ) )
7269, 71oveq12d 5558 . . 3  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
y  .R  ( z  +R  v ) )  +R  ( x  .R  (
w  +R  u ) ) )  =  ( ( ( y  .R  z )  +R  (
y  .R  v )
)  +R  ( ( x  .R  w )  +R  ( x  .R  u ) ) ) )
7343, 39, 19syl2anc 397 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( y  .R  z )  e.  R. )
7443, 40, 32syl2anc 397 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( y  .R  v )  e.  R. )
7538, 44, 20syl2anc 397 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( x  .R  w )  e.  R. )
7638, 45, 33syl2anc 397 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( x  .R  u )  e.  R. )
7773, 74, 75, 60, 62, 76, 65caov4d 5713 . . 3  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
( y  .R  z
)  +R  ( y  .R  v ) )  +R  ( ( x  .R  w )  +R  ( x  .R  u
) ) )  =  ( ( ( y  .R  z )  +R  ( x  .R  w
) )  +R  (
( y  .R  v
)  +R  ( x  .R  u ) ) ) )
7872, 77eqtrd 2088 . 2  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
y  .R  ( z  +R  v ) )  +R  ( x  .R  (
w  +R  u ) ) )  =  ( ( ( y  .R  z )  +R  (
x  .R  w )
)  +R  ( ( y  .R  v )  +R  ( x  .R  u ) ) ) )
791, 2, 3, 4, 5, 6, 10, 24, 37, 67, 78ecovidi 6249 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  +  C ) )  =  ( ( A  x.  B )  +  ( A  x.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    /\ w3a 896    = wceq 1259    e. wcel 1409    _E cep 4052   `'ccnv 4372  (class class class)co 5540   R.cnr 6453   -1Rcm1r 6456    +R cplr 6457    .R cmr 6458   CCcc 6945    + caddc 6950    x. cmul 6952
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-1o 6032  df-2o 6033  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-rq 6508  df-ltnqqs 6509  df-enq0 6580  df-nq0 6581  df-0nq0 6582  df-plq0 6583  df-mq0 6584  df-inp 6622  df-i1p 6623  df-iplp 6624  df-imp 6625  df-enr 6869  df-nr 6870  df-plr 6871  df-mr 6872  df-m1r 6876  df-c 6953  df-add 6958  df-mul 6959
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator