ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axmulcom Unicode version

Theorem axmulcom 7647
Description: Multiplication of complex numbers is commutative. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcom 7689 be used later. Instead, use mulcom 7717. (Contributed by NM, 31-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
axmulcom  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( B  x.  A ) )

Proof of Theorem axmulcom
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcnqs 7617 . 2  |-  CC  =  ( ( R.  X.  R. ) /. `'  _E  )
2 mulcnsrec 7619 . 2  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( [ <. x ,  y >. ] `'  _E  x.  [ <. z ,  w >. ] `'  _E  )  =  [ <. ( ( x  .R  z )  +R  ( -1R  .R  (
y  .R  w )
) ) ,  ( ( y  .R  z
)  +R  ( x  .R  w ) )
>. ] `'  _E  )
3 mulcnsrec 7619 . 2  |-  ( ( ( z  e.  R.  /\  w  e.  R. )  /\  ( x  e.  R.  /\  y  e.  R. )
)  ->  ( [ <. z ,  w >. ] `'  _E  x.  [ <. x ,  y >. ] `'  _E  )  =  [ <. ( ( z  .R  x )  +R  ( -1R  .R  ( w  .R  y ) ) ) ,  ( ( w  .R  x )  +R  ( z  .R  y
) ) >. ] `'  _E  )
4 simpll 503 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  x  e.  R. )
5 simprl 505 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  z  e.  R. )
6 mulcomsrg 7533 . . . 4  |-  ( ( x  e.  R.  /\  z  e.  R. )  ->  ( x  .R  z
)  =  ( z  .R  x ) )
74, 5, 6syl2anc 408 . . 3  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( x  .R  z )  =  ( z  .R  x ) )
8 simplr 504 . . . . 5  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  y  e.  R. )
9 simprr 506 . . . . 5  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  w  e.  R. )
10 mulcomsrg 7533 . . . . 5  |-  ( ( y  e.  R.  /\  w  e.  R. )  ->  ( y  .R  w
)  =  ( w  .R  y ) )
118, 9, 10syl2anc 408 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( y  .R  w )  =  ( w  .R  y ) )
1211oveq2d 5758 . . 3  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( -1R  .R  ( y  .R  w
) )  =  ( -1R  .R  ( w  .R  y ) ) )
137, 12oveq12d 5760 . 2  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( (
x  .R  z )  +R  ( -1R  .R  (
y  .R  w )
) )  =  ( ( z  .R  x
)  +R  ( -1R 
.R  ( w  .R  y ) ) ) )
14 mulcomsrg 7533 . . . . 5  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( y  .R  z
)  =  ( z  .R  y ) )
158, 5, 14syl2anc 408 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( y  .R  z )  =  ( z  .R  y ) )
16 mulcomsrg 7533 . . . . 5  |-  ( ( x  e.  R.  /\  w  e.  R. )  ->  ( x  .R  w
)  =  ( w  .R  x ) )
174, 9, 16syl2anc 408 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( x  .R  w )  =  ( w  .R  x ) )
1815, 17oveq12d 5760 . . 3  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( (
y  .R  z )  +R  ( x  .R  w
) )  =  ( ( z  .R  y
)  +R  ( w  .R  x ) ) )
19 mulclsr 7530 . . . . 5  |-  ( ( z  e.  R.  /\  y  e.  R. )  ->  ( z  .R  y
)  e.  R. )
205, 8, 19syl2anc 408 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( z  .R  y )  e.  R. )
21 mulclsr 7530 . . . . 5  |-  ( ( w  e.  R.  /\  x  e.  R. )  ->  ( w  .R  x
)  e.  R. )
229, 4, 21syl2anc 408 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( w  .R  x )  e.  R. )
23 addcomsrg 7531 . . . 4  |-  ( ( ( z  .R  y
)  e.  R.  /\  ( w  .R  x
)  e.  R. )  ->  ( ( z  .R  y )  +R  (
w  .R  x )
)  =  ( ( w  .R  x )  +R  ( z  .R  y ) ) )
2420, 22, 23syl2anc 408 . . 3  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( (
z  .R  y )  +R  ( w  .R  x
) )  =  ( ( w  .R  x
)  +R  ( z  .R  y ) ) )
2518, 24eqtrd 2150 . 2  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( (
y  .R  z )  +R  ( x  .R  w
) )  =  ( ( w  .R  x
)  +R  ( z  .R  y ) ) )
261, 2, 3, 13, 25ecovicom 6505 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( B  x.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1316    e. wcel 1465    _E cep 4179   `'ccnv 4508  (class class class)co 5742   R.cnr 7073   -1Rcm1r 7076    +R cplr 7077    .R cmr 7078   CCcc 7586    x. cmul 7593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-eprel 4181  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-irdg 6235  df-1o 6281  df-2o 6282  df-oadd 6285  df-omul 6286  df-er 6397  df-ec 6399  df-qs 6403  df-ni 7080  df-pli 7081  df-mi 7082  df-lti 7083  df-plpq 7120  df-mpq 7121  df-enq 7123  df-nqqs 7124  df-plqqs 7125  df-mqqs 7126  df-1nqqs 7127  df-rq 7128  df-ltnqqs 7129  df-enq0 7200  df-nq0 7201  df-0nq0 7202  df-plq0 7203  df-mq0 7204  df-inp 7242  df-i1p 7243  df-iplp 7244  df-imp 7245  df-enr 7502  df-nr 7503  df-plr 7504  df-mr 7505  df-m1r 7509  df-c 7594  df-mul 7600
This theorem is referenced by:  rereceu  7665  recriota  7666
  Copyright terms: Public domain W3C validator