![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > axresscn | Unicode version |
Description: The real numbers are a subset of the complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-resscn 7200. (Contributed by NM, 1-Mar-1995.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axresscn |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0r 7059 |
. . 3
![]() ![]() ![]() ![]() | |
2 | snssi 3549 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | xpss2 4497 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | mp2b 8 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | df-r 7123 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | df-c 7119 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 4, 5, 6 | 3sstr4i 3047 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-coll 3913 ax-sep 3916 ax-nul 3924 ax-pow 3968 ax-pr 3992 ax-un 4216 ax-setind 4308 ax-iinf 4357 |
This theorem depends on definitions: df-bi 115 df-dc 777 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-ral 2358 df-rex 2359 df-reu 2360 df-rab 2362 df-v 2612 df-sbc 2825 df-csb 2918 df-dif 2984 df-un 2986 df-in 2988 df-ss 2995 df-nul 3268 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-uni 3622 df-int 3657 df-iun 3700 df-br 3806 df-opab 3860 df-mpt 3861 df-tr 3896 df-eprel 4072 df-id 4076 df-po 4079 df-iso 4080 df-iord 4149 df-on 4151 df-suc 4154 df-iom 4360 df-xp 4397 df-rel 4398 df-cnv 4399 df-co 4400 df-dm 4401 df-rn 4402 df-res 4403 df-ima 4404 df-iota 4917 df-fun 4954 df-fn 4955 df-f 4956 df-f1 4957 df-fo 4958 df-f1o 4959 df-fv 4960 df-ov 5567 df-oprab 5568 df-mpt2 5569 df-1st 5819 df-2nd 5820 df-recs 5975 df-irdg 6040 df-1o 6086 df-oadd 6090 df-omul 6091 df-er 6194 df-ec 6196 df-qs 6200 df-ni 6626 df-pli 6627 df-mi 6628 df-lti 6629 df-plpq 6666 df-mpq 6667 df-enq 6669 df-nqqs 6670 df-plqqs 6671 df-mqqs 6672 df-1nqqs 6673 df-rq 6674 df-ltnqqs 6675 df-inp 6788 df-i1p 6789 df-enr 7035 df-nr 7036 df-0r 7040 df-c 7119 df-r 7123 |
This theorem is referenced by: ax1cn 7161 rereceu 7187 recriota 7188 peano5nnnn 7190 |
Copyright terms: Public domain | W3C validator |