ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcp1nk Unicode version

Theorem bcp1nk 10508
Description: The proportion of one binomial coefficient to another with  N and  K increased by 1. (Contributed by Mario Carneiro, 16-Jan-2015.)
Assertion
Ref Expression
bcp1nk  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  _C  ( K  +  1 ) )  =  ( ( N  _C  K )  x.  ( ( N  + 
1 )  /  ( K  +  1 ) ) ) )

Proof of Theorem bcp1nk
StepHypRef Expression
1 elfzel1 9805 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  0  e.  ZZ )
2 elfzel2 9804 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  N  e.  ZZ )
3 elfzelz 9806 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  K  e.  ZZ )
4 1zzd 9081 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  1  e.  ZZ )
5 fzaddel 9839 . . . . . 6  |-  ( ( ( 0  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  1  e.  ZZ ) )  -> 
( K  e.  ( 0 ... N )  <-> 
( K  +  1 )  e.  ( ( 0  +  1 ) ... ( N  + 
1 ) ) ) )
61, 2, 3, 4, 5syl22anc 1217 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  ( K  e.  ( 0 ... N )  <->  ( K  +  1 )  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ) )
76ibi 175 . . . 4  |-  ( K  e.  ( 0 ... N )  ->  ( K  +  1 )  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )
8 1e0p1 9223 . . . . 5  |-  1  =  ( 0  +  1 )
98oveq1i 5784 . . . 4  |-  ( 1 ... ( N  + 
1 ) )  =  ( ( 0  +  1 ) ... ( N  +  1 ) )
107, 9eleqtrrdi 2233 . . 3  |-  ( K  e.  ( 0 ... N )  ->  ( K  +  1 )  e.  ( 1 ... ( N  +  1 ) ) )
11 bcm1k 10506 . . 3  |-  ( ( K  +  1 )  e.  ( 1 ... ( N  +  1 ) )  ->  (
( N  +  1 )  _C  ( K  +  1 ) )  =  ( ( ( N  +  1 )  _C  ( ( K  +  1 )  - 
1 ) )  x.  ( ( ( N  +  1 )  -  ( ( K  + 
1 )  -  1 ) )  /  ( K  +  1 ) ) ) )
1210, 11syl 14 . 2  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  _C  ( K  +  1 ) )  =  ( ( ( N  +  1 )  _C  ( ( K  +  1 )  - 
1 ) )  x.  ( ( ( N  +  1 )  -  ( ( K  + 
1 )  -  1 ) )  /  ( K  +  1 ) ) ) )
133zcnd 9174 . . . . . . 7  |-  ( K  e.  ( 0 ... N )  ->  K  e.  CC )
14 ax-1cn 7713 . . . . . . 7  |-  1  e.  CC
15 pncan 7968 . . . . . . 7  |-  ( ( K  e.  CC  /\  1  e.  CC )  ->  ( ( K  + 
1 )  -  1 )  =  K )
1613, 14, 15sylancl 409 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  (
( K  +  1 )  -  1 )  =  K )
1716oveq2d 5790 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  _C  ( ( K  +  1 )  -  1 ) )  =  ( ( N  +  1 )  _C  K ) )
18 bcp1n 10507 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  _C  K )  =  ( ( N  _C  K )  x.  ( ( N  + 
1 )  /  (
( N  +  1 )  -  K ) ) ) )
1917, 18eqtrd 2172 . . . 4  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  _C  ( ( K  +  1 )  -  1 ) )  =  ( ( N  _C  K )  x.  ( ( N  + 
1 )  /  (
( N  +  1 )  -  K ) ) ) )
2016oveq2d 5790 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  -  ( ( K  +  1 )  -  1 ) )  =  ( ( N  +  1 )  -  K ) )
2120oveq1d 5789 . . . 4  |-  ( K  e.  ( 0 ... N )  ->  (
( ( N  + 
1 )  -  (
( K  +  1 )  -  1 ) )  /  ( K  +  1 ) )  =  ( ( ( N  +  1 )  -  K )  / 
( K  +  1 ) ) )
2219, 21oveq12d 5792 . . 3  |-  ( K  e.  ( 0 ... N )  ->  (
( ( N  + 
1 )  _C  (
( K  +  1 )  -  1 ) )  x.  ( ( ( N  +  1 )  -  ( ( K  +  1 )  -  1 ) )  /  ( K  + 
1 ) ) )  =  ( ( ( N  _C  K )  x.  ( ( N  +  1 )  / 
( ( N  + 
1 )  -  K
) ) )  x.  ( ( ( N  +  1 )  -  K )  /  ( K  +  1 ) ) ) )
23 bcrpcl 10499 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  ( N  _C  K )  e.  RR+ )
2423rpcnd 9485 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  ( N  _C  K )  e.  CC )
252peano2zd 9176 . . . . . . . 8  |-  ( K  e.  ( 0 ... N )  ->  ( N  +  1 )  e.  ZZ )
2625zred 9173 . . . . . . 7  |-  ( K  e.  ( 0 ... N )  ->  ( N  +  1 )  e.  RR )
273zred 9173 . . . . . . . . 9  |-  ( K  e.  ( 0 ... N )  ->  K  e.  RR )
282zred 9173 . . . . . . . . 9  |-  ( K  e.  ( 0 ... N )  ->  N  e.  RR )
29 elfzle2 9808 . . . . . . . . 9  |-  ( K  e.  ( 0 ... N )  ->  K  <_  N )
3028ltp1d 8688 . . . . . . . . 9  |-  ( K  e.  ( 0 ... N )  ->  N  <  ( N  +  1 ) )
3127, 28, 26, 29, 30lelttrd 7887 . . . . . . . 8  |-  ( K  e.  ( 0 ... N )  ->  K  <  ( N  +  1 ) )
32 znnsub 9105 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  ( N  +  1
)  e.  ZZ )  ->  ( K  < 
( N  +  1 )  <->  ( ( N  +  1 )  -  K )  e.  NN ) )
333, 25, 32syl2anc 408 . . . . . . . 8  |-  ( K  e.  ( 0 ... N )  ->  ( K  <  ( N  + 
1 )  <->  ( ( N  +  1 )  -  K )  e.  NN ) )
3431, 33mpbid 146 . . . . . . 7  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  -  K )  e.  NN )
3526, 34nndivred 8770 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  /  ( ( N  +  1 )  -  K ) )  e.  RR )
3635recnd 7794 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  /  ( ( N  +  1 )  -  K ) )  e.  CC )
3734nnred 8733 . . . . . . 7  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  -  K )  e.  RR )
38 elfznn0 9894 . . . . . . . 8  |-  ( K  e.  ( 0 ... N )  ->  K  e.  NN0 )
39 nn0p1nn 9016 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( K  +  1 )  e.  NN )
4038, 39syl 14 . . . . . . 7  |-  ( K  e.  ( 0 ... N )  ->  ( K  +  1 )  e.  NN )
4137, 40nndivred 8770 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  (
( ( N  + 
1 )  -  K
)  /  ( K  +  1 ) )  e.  RR )
4241recnd 7794 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  (
( ( N  + 
1 )  -  K
)  /  ( K  +  1 ) )  e.  CC )
4324, 36, 42mulassd 7789 . . . 4  |-  ( K  e.  ( 0 ... N )  ->  (
( ( N  _C  K )  x.  (
( N  +  1 )  /  ( ( N  +  1 )  -  K ) ) )  x.  ( ( ( N  +  1 )  -  K )  /  ( K  + 
1 ) ) )  =  ( ( N  _C  K )  x.  ( ( ( N  +  1 )  / 
( ( N  + 
1 )  -  K
) )  x.  (
( ( N  + 
1 )  -  K
)  /  ( K  +  1 ) ) ) ) )
4425zcnd 9174 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  ( N  +  1 )  e.  CC )
4534nncnd 8734 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  -  K )  e.  CC )
4640nncnd 8734 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  ( K  +  1 )  e.  CC )
4734nnap0d 8766 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  -  K ) #  0 )
4840nnap0d 8766 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  ( K  +  1 ) #  0 )
4944, 45, 46, 47, 48dmdcanap2d 8581 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  (
( ( N  + 
1 )  /  (
( N  +  1 )  -  K ) )  x.  ( ( ( N  +  1 )  -  K )  /  ( K  + 
1 ) ) )  =  ( ( N  +  1 )  / 
( K  +  1 ) ) )
5049oveq2d 5790 . . . 4  |-  ( K  e.  ( 0 ... N )  ->  (
( N  _C  K
)  x.  ( ( ( N  +  1 )  /  ( ( N  +  1 )  -  K ) )  x.  ( ( ( N  +  1 )  -  K )  / 
( K  +  1 ) ) ) )  =  ( ( N  _C  K )  x.  ( ( N  + 
1 )  /  ( K  +  1 ) ) ) )
5143, 50eqtrd 2172 . . 3  |-  ( K  e.  ( 0 ... N )  ->  (
( ( N  _C  K )  x.  (
( N  +  1 )  /  ( ( N  +  1 )  -  K ) ) )  x.  ( ( ( N  +  1 )  -  K )  /  ( K  + 
1 ) ) )  =  ( ( N  _C  K )  x.  ( ( N  + 
1 )  /  ( K  +  1 ) ) ) )
5222, 51eqtrd 2172 . 2  |-  ( K  e.  ( 0 ... N )  ->  (
( ( N  + 
1 )  _C  (
( K  +  1 )  -  1 ) )  x.  ( ( ( N  +  1 )  -  ( ( K  +  1 )  -  1 ) )  /  ( K  + 
1 ) ) )  =  ( ( N  _C  K )  x.  ( ( N  + 
1 )  /  ( K  +  1 ) ) ) )
5312, 52eqtrd 2172 1  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  _C  ( K  +  1 ) )  =  ( ( N  _C  K )  x.  ( ( N  + 
1 )  /  ( K  +  1 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1331    e. wcel 1480   class class class wbr 3929  (class class class)co 5774   CCcc 7618   0cc0 7620   1c1 7621    + caddc 7623    x. cmul 7625    < clt 7800    - cmin 7933    / cdiv 8432   NNcn 8720   NN0cn0 8977   ZZcz 9054   ...cfz 9790    _C cbc 10493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fz 9791  df-seqfrec 10219  df-fac 10472  df-bc 10494
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator