![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bd0r | Unicode version |
Description: A formula equivalent to a
bounded one is bounded. Stated with a
commuted (compared with bd0 10907) biconditional in the hypothesis, to work
better with definitions (![]() |
Ref | Expression |
---|---|
bd0r.min |
![]() ![]() |
bd0r.maj |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bd0r |
![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bd0r.min |
. 2
![]() ![]() | |
2 | bd0r.maj |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | bicomi 130 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | bd0 10907 |
1
![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-bd0 10896 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: bdbi 10909 bdstab 10910 bddc 10911 bd3or 10912 bd3an 10913 bdfal 10916 bdxor 10919 bj-bdcel 10920 bdab 10921 bdcdeq 10922 bdne 10936 bdnel 10937 bdreu 10938 bdrmo 10939 bdsbcALT 10942 bdss 10947 bdeq0 10950 bdvsn 10957 bdop 10958 bdeqsuc 10964 bj-bdind 11017 |
Copyright terms: Public domain | W3C validator |