Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bd0r Unicode version

Theorem bd0r 10908
Description: A formula equivalent to a bounded one is bounded. Stated with a commuted (compared with bd0 10907) biconditional in the hypothesis, to work better with definitions (
ps is the definiendum that one wants to prove bounded). (Contributed by BJ, 3-Oct-2019.)
Hypotheses
Ref Expression
bd0r.min  |- BOUNDED  ph
bd0r.maj  |-  ( ps  <->  ph )
Assertion
Ref Expression
bd0r  |- BOUNDED  ps

Proof of Theorem bd0r
StepHypRef Expression
1 bd0r.min . 2  |- BOUNDED  ph
2 bd0r.maj . . 3  |-  ( ps  <->  ph )
32bicomi 130 . 2  |-  ( ph  <->  ps )
41, 3bd0 10907 1  |- BOUNDED  ps
Colors of variables: wff set class
Syntax hints:    <-> wb 103  BOUNDED wbd 10895
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-bd0 10896
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  bdbi  10909  bdstab  10910  bddc  10911  bd3or  10912  bd3an  10913  bdfal  10916  bdxor  10919  bj-bdcel  10920  bdab  10921  bdcdeq  10922  bdne  10936  bdnel  10937  bdreu  10938  bdrmo  10939  bdsbcALT  10942  bdss  10947  bdeq0  10950  bdvsn  10957  bdop  10958  bdeqsuc  10964  bj-bdind  11017
  Copyright terms: Public domain W3C validator