Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdbm1.3ii Unicode version

Theorem bdbm1.3ii 10398
 Description: Bounded version of bm1.3ii 3906. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bdbm1.3ii.bd BOUNDED
bdbm1.3ii.1
Assertion
Ref Expression
bdbm1.3ii
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem bdbm1.3ii
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 bdbm1.3ii.1 . . . . 5
2 elequ2 1617 . . . . . . . 8
32imbi2d 223 . . . . . . 7
43albidv 1721 . . . . . 6
54cbvexv 1811 . . . . 5
61, 5mpbi 137 . . . 4
7 bdbm1.3ii.bd . . . . 5 BOUNDED
87bdsep1 10392 . . . 4
96, 8pm3.2i 261 . . 3
109exan 1599 . 2
11 19.42v 1802 . . . 4
12 bimsc1 881 . . . . . 6
1312alanimi 1364 . . . . 5
1413eximi 1507 . . . 4
1511, 14sylbir 129 . . 3
1615exlimiv 1505 . 2
1710, 16ax-mp 7 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 101   wb 102  wal 1257  wex 1397  BOUNDED wbd 10319 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-bdsep 10391 This theorem depends on definitions:  df-bi 114 This theorem is referenced by:  bj-zfpair2  10417  bj-axun2  10422  bj-uniex2  10423
 Copyright terms: Public domain W3C validator