Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdbm1.3ii Unicode version

Theorem bdbm1.3ii 10398
Description: Bounded version of bm1.3ii 3906. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bdbm1.3ii.bd  |- BOUNDED  ph
bdbm1.3ii.1  |-  E. x A. y ( ph  ->  y  e.  x )
Assertion
Ref Expression
bdbm1.3ii  |-  E. x A. y ( y  e.  x  <->  ph )
Distinct variable groups:    ph, x    x, y
Allowed substitution hint:    ph( y)

Proof of Theorem bdbm1.3ii
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 bdbm1.3ii.1 . . . . 5  |-  E. x A. y ( ph  ->  y  e.  x )
2 elequ2 1617 . . . . . . . 8  |-  ( x  =  z  ->  (
y  e.  x  <->  y  e.  z ) )
32imbi2d 223 . . . . . . 7  |-  ( x  =  z  ->  (
( ph  ->  y  e.  x )  <->  ( ph  ->  y  e.  z ) ) )
43albidv 1721 . . . . . 6  |-  ( x  =  z  ->  ( A. y ( ph  ->  y  e.  x )  <->  A. y
( ph  ->  y  e.  z ) ) )
54cbvexv 1811 . . . . 5  |-  ( E. x A. y (
ph  ->  y  e.  x
)  <->  E. z A. y
( ph  ->  y  e.  z ) )
61, 5mpbi 137 . . . 4  |-  E. z A. y ( ph  ->  y  e.  z )
7 bdbm1.3ii.bd . . . . 5  |- BOUNDED  ph
87bdsep1 10392 . . . 4  |-  E. x A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
)
96, 8pm3.2i 261 . . 3  |-  ( E. z A. y (
ph  ->  y  e.  z )  /\  E. x A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
) )
109exan 1599 . 2  |-  E. z
( A. y (
ph  ->  y  e.  z )  /\  E. x A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
) )
11 19.42v 1802 . . . 4  |-  ( E. x ( A. y
( ph  ->  y  e.  z )  /\  A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
) )  <->  ( A. y ( ph  ->  y  e.  z )  /\  E. x A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
) ) )
12 bimsc1 881 . . . . . 6  |-  ( ( ( ph  ->  y  e.  z )  /\  (
y  e.  x  <->  ( y  e.  z  /\  ph )
) )  ->  (
y  e.  x  <->  ph ) )
1312alanimi 1364 . . . . 5  |-  ( ( A. y ( ph  ->  y  e.  z )  /\  A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
) )  ->  A. y
( y  e.  x  <->  ph ) )
1413eximi 1507 . . . 4  |-  ( E. x ( A. y
( ph  ->  y  e.  z )  /\  A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
) )  ->  E. x A. y ( y  e.  x  <->  ph ) )
1511, 14sylbir 129 . . 3  |-  ( ( A. y ( ph  ->  y  e.  z )  /\  E. x A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
) )  ->  E. x A. y ( y  e.  x  <->  ph ) )
1615exlimiv 1505 . 2  |-  ( E. z ( A. y
( ph  ->  y  e.  z )  /\  E. x A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
) )  ->  E. x A. y ( y  e.  x  <->  ph ) )
1710, 16ax-mp 7 1  |-  E. x A. y ( y  e.  x  <->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102   A.wal 1257   E.wex 1397  BOUNDED wbd 10319
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-bdsep 10391
This theorem depends on definitions:  df-bi 114
This theorem is referenced by:  bj-zfpair2  10417  bj-axun2  10422  bj-uniex2  10423
  Copyright terms: Public domain W3C validator