![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcab | Unicode version |
Description: A class defined by class abstraction using a bounded formula is bounded. (Contributed by BJ, 6-Oct-2019.) |
Ref | Expression |
---|---|
bdcab.1 |
![]() ![]() |
Ref | Expression |
---|---|
bdcab |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdcab.1 |
. . 3
![]() ![]() | |
2 | 1 | bdab 10787 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | bdelir 10796 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-gen 1379 ax-bd0 10762 ax-bdsb 10771 |
This theorem depends on definitions: df-bi 115 df-clab 2069 df-bdc 10790 |
This theorem is referenced by: bds 10800 bdcrab 10801 bdccsb 10809 bdcdif 10810 bdcun 10811 bdcin 10812 bdcpw 10818 bdcsn 10819 bdcuni 10825 bdcint 10826 bdciun 10827 bdciin 10828 bdcriota 10832 bj-bdfindis 10900 |
Copyright terms: Public domain | W3C validator |