![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdceqir | Unicode version |
Description: A class equal to a
bounded one is bounded. Stated with a commuted
(compared with bdceqi 10792) equality in the hypothesis, to work better
with definitions (![]() |
Ref | Expression |
---|---|
bdceqir.min |
![]() ![]() |
bdceqir.maj |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bdceqir |
![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdceqir.min |
. 2
![]() ![]() | |
2 | bdceqir.maj |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | eqcomi 2086 |
. 2
![]() ![]() ![]() ![]() |
4 | 1, 3 | bdceqi 10792 |
1
![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-4 1441 ax-17 1460 ax-ial 1468 ax-ext 2064 ax-bd0 10762 |
This theorem depends on definitions: df-bi 115 df-cleq 2075 df-clel 2078 df-bdc 10790 |
This theorem is referenced by: bdcrab 10801 bdccsb 10809 bdcdif 10810 bdcun 10811 bdcin 10812 bdcnulALT 10815 bdcpw 10818 bdcsn 10819 bdcpr 10820 bdctp 10821 bdcuni 10825 bdcint 10826 bdciun 10827 bdciin 10828 bdcsuc 10829 bdcriota 10832 |
Copyright terms: Public domain | W3C validator |