Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcv Unicode version

Theorem bdcv 10906
Description: A setvar is a bounded class. (Contributed by BJ, 3-Oct-2019.)
Assertion
Ref Expression
bdcv  |- BOUNDED  x

Proof of Theorem bdcv
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ax-bdel 10879 . 2  |- BOUNDED  y  e.  x
21bdelir 10905 1  |- BOUNDED  x
Colors of variables: wff set class
Syntax hints:  BOUNDED wbdc 10898
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-gen 1379  ax-bdel 10879
This theorem depends on definitions:  df-bi 115  df-bdc 10899
This theorem is referenced by:  bdvsn  10932  bdcsuc  10938  bdeqsuc  10939  bj-inex  10965  bj-nntrans  11013  bj-omtrans  11018  bj-inf2vn  11036  bj-omex2  11039  bj-nn0sucALT  11040
  Copyright terms: Public domain W3C validator