![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdph | Unicode version |
Description: A formula which defines (by class abstraction) a bounded class is bounded. (Contributed by BJ, 6-Oct-2019.) |
Ref | Expression |
---|---|
bdph.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bdph |
![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdph.1 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | bdeli 10904 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | df-clab 2070 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | bd0 10882 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 4 | ax-bdsb 10880 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | sbid2v 1915 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 5, 6 | bd0 10882 |
1
![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-11 1438 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-bd0 10871 ax-bdsb 10880 |
This theorem depends on definitions: df-bi 115 df-sb 1688 df-clab 2070 df-bdc 10899 |
This theorem is referenced by: bds 10909 |
Copyright terms: Public domain | W3C validator |