Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdssex Unicode version

Theorem bdssex 10851
 Description: Bounded version of ssex 3923. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bdssex.bd BOUNDED
bdssex.1
Assertion
Ref Expression
bdssex

Proof of Theorem bdssex
StepHypRef Expression
1 df-ss 2987 . 2
2 bdssex.bd . . . 4 BOUNDED
3 bdssex.1 . . . 4
42, 3bdinex2 10849 . . 3
5 eleq1 2142 . . 3
64, 5mpbii 146 . 2
71, 6sylbi 119 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1285   wcel 1434  cvv 2602   cin 2973   wss 2974  BOUNDED wbdc 10789 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-bdsep 10833 This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-v 2604  df-in 2980  df-ss 2987  df-bdc 10790 This theorem is referenced by:  bdssexi  10852  bdssexg  10853  bdfind  10899
 Copyright terms: Public domain W3C validator