ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bernneq Unicode version

Theorem bernneq 10380
Description: Bernoulli's inequality, due to Johan Bernoulli (1667-1748). (Contributed by NM, 21-Feb-2005.)
Assertion
Ref Expression
bernneq  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  -u 1  <_  A )  ->  (
1  +  ( A  x.  N ) )  <_  ( ( 1  +  A ) ^ N ) )

Proof of Theorem bernneq
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5750 . . . . . . . 8  |-  ( j  =  0  ->  ( A  x.  j )  =  ( A  x.  0 ) )
21oveq2d 5758 . . . . . . 7  |-  ( j  =  0  ->  (
1  +  ( A  x.  j ) )  =  ( 1  +  ( A  x.  0 ) ) )
3 oveq2 5750 . . . . . . 7  |-  ( j  =  0  ->  (
( 1  +  A
) ^ j )  =  ( ( 1  +  A ) ^
0 ) )
42, 3breq12d 3912 . . . . . 6  |-  ( j  =  0  ->  (
( 1  +  ( A  x.  j ) )  <_  ( (
1  +  A ) ^ j )  <->  ( 1  +  ( A  x.  0 ) )  <_ 
( ( 1  +  A ) ^ 0 ) ) )
54imbi2d 229 . . . . 5  |-  ( j  =  0  ->  (
( ( A  e.  RR  /\  -u 1  <_  A )  ->  (
1  +  ( A  x.  j ) )  <_  ( ( 1  +  A ) ^
j ) )  <->  ( ( A  e.  RR  /\  -u 1  <_  A )  ->  (
1  +  ( A  x.  0 ) )  <_  ( ( 1  +  A ) ^
0 ) ) ) )
6 oveq2 5750 . . . . . . . 8  |-  ( j  =  k  ->  ( A  x.  j )  =  ( A  x.  k ) )
76oveq2d 5758 . . . . . . 7  |-  ( j  =  k  ->  (
1  +  ( A  x.  j ) )  =  ( 1  +  ( A  x.  k
) ) )
8 oveq2 5750 . . . . . . 7  |-  ( j  =  k  ->  (
( 1  +  A
) ^ j )  =  ( ( 1  +  A ) ^
k ) )
97, 8breq12d 3912 . . . . . 6  |-  ( j  =  k  ->  (
( 1  +  ( A  x.  j ) )  <_  ( (
1  +  A ) ^ j )  <->  ( 1  +  ( A  x.  k ) )  <_ 
( ( 1  +  A ) ^ k
) ) )
109imbi2d 229 . . . . 5  |-  ( j  =  k  ->  (
( ( A  e.  RR  /\  -u 1  <_  A )  ->  (
1  +  ( A  x.  j ) )  <_  ( ( 1  +  A ) ^
j ) )  <->  ( ( A  e.  RR  /\  -u 1  <_  A )  ->  (
1  +  ( A  x.  k ) )  <_  ( ( 1  +  A ) ^
k ) ) ) )
11 oveq2 5750 . . . . . . . 8  |-  ( j  =  ( k  +  1 )  ->  ( A  x.  j )  =  ( A  x.  ( k  +  1 ) ) )
1211oveq2d 5758 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  (
1  +  ( A  x.  j ) )  =  ( 1  +  ( A  x.  (
k  +  1 ) ) ) )
13 oveq2 5750 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  (
( 1  +  A
) ^ j )  =  ( ( 1  +  A ) ^
( k  +  1 ) ) )
1412, 13breq12d 3912 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  (
( 1  +  ( A  x.  j ) )  <_  ( (
1  +  A ) ^ j )  <->  ( 1  +  ( A  x.  ( k  +  1 ) ) )  <_ 
( ( 1  +  A ) ^ (
k  +  1 ) ) ) )
1514imbi2d 229 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( ( A  e.  RR  /\  -u 1  <_  A )  ->  (
1  +  ( A  x.  j ) )  <_  ( ( 1  +  A ) ^
j ) )  <->  ( ( A  e.  RR  /\  -u 1  <_  A )  ->  (
1  +  ( A  x.  ( k  +  1 ) ) )  <_  ( ( 1  +  A ) ^
( k  +  1 ) ) ) ) )
16 oveq2 5750 . . . . . . . 8  |-  ( j  =  N  ->  ( A  x.  j )  =  ( A  x.  N ) )
1716oveq2d 5758 . . . . . . 7  |-  ( j  =  N  ->  (
1  +  ( A  x.  j ) )  =  ( 1  +  ( A  x.  N
) ) )
18 oveq2 5750 . . . . . . 7  |-  ( j  =  N  ->  (
( 1  +  A
) ^ j )  =  ( ( 1  +  A ) ^ N ) )
1917, 18breq12d 3912 . . . . . 6  |-  ( j  =  N  ->  (
( 1  +  ( A  x.  j ) )  <_  ( (
1  +  A ) ^ j )  <->  ( 1  +  ( A  x.  N ) )  <_ 
( ( 1  +  A ) ^ N
) ) )
2019imbi2d 229 . . . . 5  |-  ( j  =  N  ->  (
( ( A  e.  RR  /\  -u 1  <_  A )  ->  (
1  +  ( A  x.  j ) )  <_  ( ( 1  +  A ) ^
j ) )  <->  ( ( A  e.  RR  /\  -u 1  <_  A )  ->  (
1  +  ( A  x.  N ) )  <_  ( ( 1  +  A ) ^ N ) ) ) )
21 recn 7721 . . . . . . 7  |-  ( A  e.  RR  ->  A  e.  CC )
22 mul01 8119 . . . . . . . . . 10  |-  ( A  e.  CC  ->  ( A  x.  0 )  =  0 )
2322oveq2d 5758 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
1  +  ( A  x.  0 ) )  =  ( 1  +  0 ) )
24 1p0e1 8804 . . . . . . . . 9  |-  ( 1  +  0 )  =  1
2523, 24syl6eq 2166 . . . . . . . 8  |-  ( A  e.  CC  ->  (
1  +  ( A  x.  0 ) )  =  1 )
26 1le1 8302 . . . . . . . . 9  |-  1  <_  1
27 ax-1cn 7681 . . . . . . . . . . 11  |-  1  e.  CC
28 addcl 7713 . . . . . . . . . . 11  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1  +  A
)  e.  CC )
2927, 28mpan 420 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
1  +  A )  e.  CC )
30 exp0 10265 . . . . . . . . . 10  |-  ( ( 1  +  A )  e.  CC  ->  (
( 1  +  A
) ^ 0 )  =  1 )
3129, 30syl 14 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( 1  +  A
) ^ 0 )  =  1 )
3226, 31breqtrrid 3936 . . . . . . . 8  |-  ( A  e.  CC  ->  1  <_  ( ( 1  +  A ) ^ 0 ) )
3325, 32eqbrtrd 3920 . . . . . . 7  |-  ( A  e.  CC  ->  (
1  +  ( A  x.  0 ) )  <_  ( ( 1  +  A ) ^
0 ) )
3421, 33syl 14 . . . . . 6  |-  ( A  e.  RR  ->  (
1  +  ( A  x.  0 ) )  <_  ( ( 1  +  A ) ^
0 ) )
3534adantr 274 . . . . 5  |-  ( ( A  e.  RR  /\  -u 1  <_  A )  ->  ( 1  +  ( A  x.  0 ) )  <_  ( (
1  +  A ) ^ 0 ) )
36 1re 7733 . . . . . . . . . . . . . 14  |-  1  e.  RR
37 nn0re 8954 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  k  e.  RR )
38 remulcl 7716 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  k  e.  RR )  ->  ( A  x.  k
)  e.  RR )
3937, 38sylan2 284 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( A  x.  k
)  e.  RR )
40 readdcl 7714 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  RR  /\  ( A  x.  k
)  e.  RR )  ->  ( 1  +  ( A  x.  k
) )  e.  RR )
4136, 39, 40sylancr 410 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( 1  +  ( A  x.  k ) )  e.  RR )
42 simpl 108 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  ->  A  e.  RR )
43 readdcl 7714 . . . . . . . . . . . . 13  |-  ( ( ( 1  +  ( A  x.  k ) )  e.  RR  /\  A  e.  RR )  ->  ( ( 1  +  ( A  x.  k
) )  +  A
)  e.  RR )
4441, 42, 43syl2anc 408 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( ( 1  +  ( A  x.  k
) )  +  A
)  e.  RR )
4544adantr 274 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  k  e.  NN0 )  /\  ( -u 1  <_  A  /\  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) ) )  ->  (
( 1  +  ( A  x.  k ) )  +  A )  e.  RR )
46 readdcl 7714 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  RR  /\  A  e.  RR )  ->  ( 1  +  A
)  e.  RR )
4736, 46mpan 420 . . . . . . . . . . . . . 14  |-  ( A  e.  RR  ->  (
1  +  A )  e.  RR )
4847adantr 274 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( 1  +  A
)  e.  RR )
4941, 48remulcld 7764 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( ( 1  +  ( A  x.  k
) )  x.  (
1  +  A ) )  e.  RR )
5049adantr 274 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  k  e.  NN0 )  /\  ( -u 1  <_  A  /\  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) ) )  ->  (
( 1  +  ( A  x.  k ) )  x.  ( 1  +  A ) )  e.  RR )
51 reexpcl 10278 . . . . . . . . . . . . . 14  |-  ( ( ( 1  +  A
)  e.  RR  /\  k  e.  NN0 )  -> 
( ( 1  +  A ) ^ k
)  e.  RR )
5247, 51sylan 281 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( ( 1  +  A ) ^ k
)  e.  RR )
5352, 48remulcld 7764 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( ( ( 1  +  A ) ^
k )  x.  (
1  +  A ) )  e.  RR )
5453adantr 274 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  k  e.  NN0 )  /\  ( -u 1  <_  A  /\  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) ) )  ->  (
( ( 1  +  A ) ^ k
)  x.  ( 1  +  A ) )  e.  RR )
55 remulcl 7716 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  RR  /\  A  e.  RR )  ->  ( A  x.  A
)  e.  RR )
5655anidms 394 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  RR  ->  ( A  x.  A )  e.  RR )
57 msqge0 8346 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  RR  ->  0  <_  ( A  x.  A
) )
5856, 57jca 304 . . . . . . . . . . . . . . . 16  |-  ( A  e.  RR  ->  (
( A  x.  A
)  e.  RR  /\  0  <_  ( A  x.  A ) ) )
59 nn0ge0 8970 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN0  ->  0  <_ 
k )
6037, 59jca 304 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  ( k  e.  RR  /\  0  <_  k ) )
61 mulge0 8349 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  x.  A )  e.  RR  /\  0  <_  ( A  x.  A ) )  /\  ( k  e.  RR  /\  0  <_  k )
)  ->  0  <_  ( ( A  x.  A
)  x.  k ) )
6258, 60, 61syl2an 287 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
0  <_  ( ( A  x.  A )  x.  k ) )
6321adantr 274 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  ->  A  e.  CC )
64 nn0cn 8955 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN0  ->  k  e.  CC )
6564adantl 275 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
k  e.  CC )
6663, 63, 65mul32d 7883 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( ( A  x.  A )  x.  k
)  =  ( ( A  x.  k )  x.  A ) )
6762, 66breqtrd 3924 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
0  <_  ( ( A  x.  k )  x.  A ) )
68 simpl 108 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  RR  /\  k  e.  RR )  ->  A  e.  RR )
6938, 68remulcld 7764 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  RR  /\  k  e.  RR )  ->  ( ( A  x.  k )  x.  A
)  e.  RR )
7037, 69sylan2 284 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( ( A  x.  k )  x.  A
)  e.  RR )
7144, 70addge01d 8263 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( 0  <_  (
( A  x.  k
)  x.  A )  <-> 
( ( 1  +  ( A  x.  k
) )  +  A
)  <_  ( (
( 1  +  ( A  x.  k ) )  +  A )  +  ( ( A  x.  k )  x.  A ) ) ) )
7267, 71mpbid 146 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( ( 1  +  ( A  x.  k
) )  +  A
)  <_  ( (
( 1  +  ( A  x.  k ) )  +  A )  +  ( ( A  x.  k )  x.  A ) ) )
73 mulcl 7715 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( A  x.  k
)  e.  CC )
74 addcl 7713 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  e.  CC  /\  ( A  x.  k
)  e.  CC )  ->  ( 1  +  ( A  x.  k
) )  e.  CC )
7527, 73, 74sylancr 410 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( 1  +  ( A  x.  k ) )  e.  CC )
76 simpl 108 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  A  e.  CC )
7773, 76mulcld 7754 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( ( A  x.  k )  x.  A
)  e.  CC )
7875, 76, 77addassd 7756 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( ( ( 1  +  ( A  x.  k ) )  +  A )  +  ( ( A  x.  k
)  x.  A ) )  =  ( ( 1  +  ( A  x.  k ) )  +  ( A  +  ( ( A  x.  k )  x.  A
) ) ) )
79 muladd11 7863 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  x.  k
)  e.  CC  /\  A  e.  CC )  ->  ( ( 1  +  ( A  x.  k
) )  x.  (
1  +  A ) )  =  ( ( 1  +  ( A  x.  k ) )  +  ( A  +  ( ( A  x.  k )  x.  A
) ) ) )
8073, 76, 79syl2anc 408 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( ( 1  +  ( A  x.  k
) )  x.  (
1  +  A ) )  =  ( ( 1  +  ( A  x.  k ) )  +  ( A  +  ( ( A  x.  k )  x.  A
) ) ) )
8178, 80eqtr4d 2153 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( ( ( 1  +  ( A  x.  k ) )  +  A )  +  ( ( A  x.  k
)  x.  A ) )  =  ( ( 1  +  ( A  x.  k ) )  x.  ( 1  +  A ) ) )
8221, 64, 81syl2an 287 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( ( ( 1  +  ( A  x.  k ) )  +  A )  +  ( ( A  x.  k
)  x.  A ) )  =  ( ( 1  +  ( A  x.  k ) )  x.  ( 1  +  A ) ) )
8372, 82breqtrd 3924 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( ( 1  +  ( A  x.  k
) )  +  A
)  <_  ( (
1  +  ( A  x.  k ) )  x.  ( 1  +  A ) ) )
8483adantr 274 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  k  e.  NN0 )  /\  ( -u 1  <_  A  /\  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) ) )  ->  (
( 1  +  ( A  x.  k ) )  +  A )  <_  ( ( 1  +  ( A  x.  k ) )  x.  ( 1  +  A
) ) )
8541adantr 274 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  k  e.  NN0 )  /\  ( -u 1  <_  A  /\  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) ) )  ->  (
1  +  ( A  x.  k ) )  e.  RR )
8652adantr 274 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  k  e.  NN0 )  /\  ( -u 1  <_  A  /\  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) ) )  ->  (
( 1  +  A
) ^ k )  e.  RR )
8748adantr 274 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  k  e.  NN0 )  /\  ( -u 1  <_  A  /\  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) ) )  ->  (
1  +  A )  e.  RR )
88 neg1rr 8794 . . . . . . . . . . . . . . . 16  |-  -u 1  e.  RR
89 leadd2 8161 . . . . . . . . . . . . . . . 16  |-  ( (
-u 1  e.  RR  /\  A  e.  RR  /\  1  e.  RR )  ->  ( -u 1  <_  A 
<->  ( 1  +  -u
1 )  <_  (
1  +  A ) ) )
9088, 36, 89mp3an13 1291 . . . . . . . . . . . . . . 15  |-  ( A  e.  RR  ->  ( -u 1  <_  A  <->  ( 1  +  -u 1 )  <_ 
( 1  +  A
) ) )
91 1pneg1e0 8799 . . . . . . . . . . . . . . . 16  |-  ( 1  +  -u 1 )  =  0
9291breq1i 3906 . . . . . . . . . . . . . . 15  |-  ( ( 1  +  -u 1
)  <_  ( 1  +  A )  <->  0  <_  ( 1  +  A ) )
9390, 92syl6bb 195 . . . . . . . . . . . . . 14  |-  ( A  e.  RR  ->  ( -u 1  <_  A  <->  0  <_  ( 1  +  A ) ) )
9493biimpa 294 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  -u 1  <_  A )  ->  0  <_  ( 1  +  A ) )
9594ad2ant2r 500 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  k  e.  NN0 )  /\  ( -u 1  <_  A  /\  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) ) )  ->  0  <_  ( 1  +  A
) )
96 simprr 506 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  k  e.  NN0 )  /\  ( -u 1  <_  A  /\  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) ) )  ->  (
1  +  ( A  x.  k ) )  <_  ( ( 1  +  A ) ^
k ) )
9785, 86, 87, 95, 96lemul1ad 8665 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  k  e.  NN0 )  /\  ( -u 1  <_  A  /\  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) ) )  ->  (
( 1  +  ( A  x.  k ) )  x.  ( 1  +  A ) )  <_  ( ( ( 1  +  A ) ^ k )  x.  ( 1  +  A
) ) )
9845, 50, 54, 84, 97letrd 7854 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  k  e.  NN0 )  /\  ( -u 1  <_  A  /\  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) ) )  ->  (
( 1  +  ( A  x.  k ) )  +  A )  <_  ( ( ( 1  +  A ) ^ k )  x.  ( 1  +  A
) ) )
99 adddi 7720 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  k  e.  CC  /\  1  e.  CC )  ->  ( A  x.  ( k  +  1 ) )  =  ( ( A  x.  k )  +  ( A  x.  1 ) ) )
10027, 99mp3an3 1289 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( A  x.  (
k  +  1 ) )  =  ( ( A  x.  k )  +  ( A  x.  1 ) ) )
101 mulid1 7731 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  CC  ->  ( A  x.  1 )  =  A )
102101adantr 274 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( A  x.  1 )  =  A )
103102oveq2d 5758 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( ( A  x.  k )  +  ( A  x.  1 ) )  =  ( ( A  x.  k )  +  A ) )
104100, 103eqtrd 2150 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( A  x.  (
k  +  1 ) )  =  ( ( A  x.  k )  +  A ) )
105104oveq2d 5758 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( 1  +  ( A  x.  ( k  +  1 ) ) )  =  ( 1  +  ( ( A  x.  k )  +  A ) ) )
106 addass 7718 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  CC  /\  ( A  x.  k
)  e.  CC  /\  A  e.  CC )  ->  ( ( 1  +  ( A  x.  k
) )  +  A
)  =  ( 1  +  ( ( A  x.  k )  +  A ) ) )
10727, 106mp3an1 1287 . . . . . . . . . . . . . 14  |-  ( ( ( A  x.  k
)  e.  CC  /\  A  e.  CC )  ->  ( ( 1  +  ( A  x.  k
) )  +  A
)  =  ( 1  +  ( ( A  x.  k )  +  A ) ) )
10873, 76, 107syl2anc 408 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( ( 1  +  ( A  x.  k
) )  +  A
)  =  ( 1  +  ( ( A  x.  k )  +  A ) ) )
109105, 108eqtr4d 2153 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( 1  +  ( A  x.  ( k  +  1 ) ) )  =  ( ( 1  +  ( A  x.  k ) )  +  A ) )
11021, 64, 109syl2an 287 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( 1  +  ( A  x.  ( k  +  1 ) ) )  =  ( ( 1  +  ( A  x.  k ) )  +  A ) )
111110adantr 274 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  k  e.  NN0 )  /\  ( -u 1  <_  A  /\  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) ) )  ->  (
1  +  ( A  x.  ( k  +  1 ) ) )  =  ( ( 1  +  ( A  x.  k ) )  +  A ) )
11227, 21, 28sylancr 410 . . . . . . . . . . . 12  |-  ( A  e.  RR  ->  (
1  +  A )  e.  CC )
113 expp1 10268 . . . . . . . . . . . 12  |-  ( ( ( 1  +  A
)  e.  CC  /\  k  e.  NN0 )  -> 
( ( 1  +  A ) ^ (
k  +  1 ) )  =  ( ( ( 1  +  A
) ^ k )  x.  ( 1  +  A ) ) )
114112, 113sylan 281 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( ( 1  +  A ) ^ (
k  +  1 ) )  =  ( ( ( 1  +  A
) ^ k )  x.  ( 1  +  A ) ) )
115114adantr 274 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  k  e.  NN0 )  /\  ( -u 1  <_  A  /\  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) ) )  ->  (
( 1  +  A
) ^ ( k  +  1 ) )  =  ( ( ( 1  +  A ) ^ k )  x.  ( 1  +  A
) ) )
11698, 111, 1153brtr4d 3930 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  k  e.  NN0 )  /\  ( -u 1  <_  A  /\  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) ) )  ->  (
1  +  ( A  x.  ( k  +  1 ) ) )  <_  ( ( 1  +  A ) ^
( k  +  1 ) ) )
117116exp43 369 . . . . . . . 8  |-  ( A  e.  RR  ->  (
k  e.  NN0  ->  (
-u 1  <_  A  ->  ( ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k )  ->  ( 1  +  ( A  x.  (
k  +  1 ) ) )  <_  (
( 1  +  A
) ^ ( k  +  1 ) ) ) ) ) )
118117com12 30 . . . . . . 7  |-  ( k  e.  NN0  ->  ( A  e.  RR  ->  ( -u 1  <_  A  ->  ( ( 1  +  ( A  x.  k ) )  <_  ( (
1  +  A ) ^ k )  -> 
( 1  +  ( A  x.  ( k  +  1 ) ) )  <_  ( (
1  +  A ) ^ ( k  +  1 ) ) ) ) ) )
119118impd 252 . . . . . 6  |-  ( k  e.  NN0  ->  ( ( A  e.  RR  /\  -u 1  <_  A )  ->  ( ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k )  ->  ( 1  +  ( A  x.  (
k  +  1 ) ) )  <_  (
( 1  +  A
) ^ ( k  +  1 ) ) ) ) )
120119a2d 26 . . . . 5  |-  ( k  e.  NN0  ->  ( ( ( A  e.  RR  /\  -u 1  <_  A )  ->  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) )  ->  ( ( A  e.  RR  /\  -u 1  <_  A )  ->  (
1  +  ( A  x.  ( k  +  1 ) ) )  <_  ( ( 1  +  A ) ^
( k  +  1 ) ) ) ) )
1215, 10, 15, 20, 35, 120nn0ind 9133 . . . 4  |-  ( N  e.  NN0  ->  ( ( A  e.  RR  /\  -u 1  <_  A )  ->  ( 1  +  ( A  x.  N ) )  <_  ( (
1  +  A ) ^ N ) ) )
122121expd 256 . . 3  |-  ( N  e.  NN0  ->  ( A  e.  RR  ->  ( -u 1  <_  A  ->  ( 1  +  ( A  x.  N ) )  <_  ( ( 1  +  A ) ^ N ) ) ) )
123122com12 30 . 2  |-  ( A  e.  RR  ->  ( N  e.  NN0  ->  ( -u 1  <_  A  ->  ( 1  +  ( A  x.  N ) )  <_  ( ( 1  +  A ) ^ N ) ) ) )
1241233imp 1160 1  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  -u 1  <_  A )  ->  (
1  +  ( A  x.  N ) )  <_  ( ( 1  +  A ) ^ N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 947    = wceq 1316    e. wcel 1465   class class class wbr 3899  (class class class)co 5742   CCcc 7586   RRcr 7587   0cc0 7588   1c1 7589    + caddc 7591    x. cmul 7593    <_ cle 7769   -ucneg 7902   NN0cn0 8945   ^cexp 10260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-ilim 4261  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-frec 6256  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8305  df-ap 8312  df-div 8401  df-inn 8689  df-n0 8946  df-z 9023  df-uz 9295  df-seqfrec 10187  df-exp 10261
This theorem is referenced by:  bernneq2  10381
  Copyright terms: Public domain W3C validator