ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemeu Unicode version

Theorem bezoutlemeu 11695
Description: Lemma for Bézout's identity. There is exactly one nonnegative integer meeting the greatest common divisor condition. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.)
Hypotheses
Ref Expression
bezoutlemgcd.1  |-  ( ph  ->  A  e.  ZZ )
bezoutlemgcd.2  |-  ( ph  ->  B  e.  ZZ )
bezoutlemgcd.3  |-  ( ph  ->  D  e.  NN0 )
bezoutlemgcd.4  |-  ( ph  ->  A. z  e.  ZZ  ( z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) ) )
Assertion
Ref Expression
bezoutlemeu  |-  ( ph  ->  E! d  e.  NN0  A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) ) )
Distinct variable groups:    z, D    A, d, z    B, d, z    ph, d
Allowed substitution hints:    ph( z)    D( d)

Proof of Theorem bezoutlemeu
Dummy variables  e  w  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bezoutlemgcd.1 . . 3  |-  ( ph  ->  A  e.  ZZ )
2 bezoutlemgcd.2 . . 3  |-  ( ph  ->  B  e.  ZZ )
3 bezoutlembi 11693 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. s  e.  ZZ  E. t  e.  ZZ  d  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) ) )
4 simpl 108 . . . . 5  |-  ( ( A. z  e.  ZZ  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. s  e.  ZZ  E. t  e.  ZZ  d  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) )  ->  A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) ) )
54reximi 2529 . . . 4  |-  ( E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. s  e.  ZZ  E. t  e.  ZZ  d  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) )  ->  E. d  e.  NN0  A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) ) )
63, 5syl 14 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. d  e.  NN0  A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) ) )
71, 2, 6syl2anc 408 . 2  |-  ( ph  ->  E. d  e.  NN0  A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) ) )
81ad2antrr 479 . . . . . 6  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  e  e.  NN0 ) )  /\  ( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  A. z  e.  ZZ  ( z  ||  e 
<->  ( z  ||  A  /\  z  ||  B ) ) ) )  ->  A  e.  ZZ )
92ad2antrr 479 . . . . . 6  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  e  e.  NN0 ) )  /\  ( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  A. z  e.  ZZ  ( z  ||  e 
<->  ( z  ||  A  /\  z  ||  B ) ) ) )  ->  B  e.  ZZ )
10 simplrl 524 . . . . . 6  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  e  e.  NN0 ) )  /\  ( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  A. z  e.  ZZ  ( z  ||  e 
<->  ( z  ||  A  /\  z  ||  B ) ) ) )  -> 
d  e.  NN0 )
11 simprl 520 . . . . . . 7  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  e  e.  NN0 ) )  /\  ( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  A. z  e.  ZZ  ( z  ||  e 
<->  ( z  ||  A  /\  z  ||  B ) ) ) )  ->  A. z  e.  ZZ  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) ) )
12 breq1 3932 . . . . . . . . 9  |-  ( z  =  w  ->  (
z  ||  d  <->  w  ||  d
) )
13 breq1 3932 . . . . . . . . . 10  |-  ( z  =  w  ->  (
z  ||  A  <->  w  ||  A
) )
14 breq1 3932 . . . . . . . . . 10  |-  ( z  =  w  ->  (
z  ||  B  <->  w  ||  B
) )
1513, 14anbi12d 464 . . . . . . . . 9  |-  ( z  =  w  ->  (
( z  ||  A  /\  z  ||  B )  <-> 
( w  ||  A  /\  w  ||  B ) ) )
1612, 15bibi12d 234 . . . . . . . 8  |-  ( z  =  w  ->  (
( z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  <-> 
( w  ||  d  <->  ( w  ||  A  /\  w  ||  B ) ) ) )
1716cbvralv 2654 . . . . . . 7  |-  ( A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  <->  A. w  e.  ZZ  ( w  ||  d 
<->  ( w  ||  A  /\  w  ||  B ) ) )
1811, 17sylib 121 . . . . . 6  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  e  e.  NN0 ) )  /\  ( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  A. z  e.  ZZ  ( z  ||  e 
<->  ( z  ||  A  /\  z  ||  B ) ) ) )  ->  A. w  e.  ZZ  ( w  ||  d  <->  ( w  ||  A  /\  w  ||  B ) ) )
19 simplrr 525 . . . . . 6  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  e  e.  NN0 ) )  /\  ( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  A. z  e.  ZZ  ( z  ||  e 
<->  ( z  ||  A  /\  z  ||  B ) ) ) )  -> 
e  e.  NN0 )
20 simprr 521 . . . . . . 7  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  e  e.  NN0 ) )  /\  ( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  A. z  e.  ZZ  ( z  ||  e 
<->  ( z  ||  A  /\  z  ||  B ) ) ) )  ->  A. z  e.  ZZ  ( z  ||  e  <->  ( z  ||  A  /\  z  ||  B ) ) )
21 breq1 3932 . . . . . . . . 9  |-  ( z  =  w  ->  (
z  ||  e  <->  w  ||  e
) )
2221, 15bibi12d 234 . . . . . . . 8  |-  ( z  =  w  ->  (
( z  ||  e  <->  ( z  ||  A  /\  z  ||  B ) )  <-> 
( w  ||  e  <->  ( w  ||  A  /\  w  ||  B ) ) ) )
2322cbvralv 2654 . . . . . . 7  |-  ( A. z  e.  ZZ  (
z  ||  e  <->  ( z  ||  A  /\  z  ||  B ) )  <->  A. w  e.  ZZ  ( w  ||  e 
<->  ( w  ||  A  /\  w  ||  B ) ) )
2420, 23sylib 121 . . . . . 6  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  e  e.  NN0 ) )  /\  ( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  A. z  e.  ZZ  ( z  ||  e 
<->  ( z  ||  A  /\  z  ||  B ) ) ) )  ->  A. w  e.  ZZ  ( w  ||  e  <->  ( w  ||  A  /\  w  ||  B ) ) )
258, 9, 10, 18, 19, 24bezoutlemmo 11694 . . . . 5  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  e  e.  NN0 ) )  /\  ( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  A. z  e.  ZZ  ( z  ||  e 
<->  ( z  ||  A  /\  z  ||  B ) ) ) )  -> 
d  =  e )
2625ex 114 . . . 4  |-  ( (
ph  /\  ( d  e.  NN0  /\  e  e. 
NN0 ) )  -> 
( ( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  A. z  e.  ZZ  ( z  ||  e 
<->  ( z  ||  A  /\  z  ||  B ) ) )  ->  d  =  e ) )
2726ralrimivva 2514 . . 3  |-  ( ph  ->  A. d  e.  NN0  A. e  e.  NN0  (
( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  A. z  e.  ZZ  ( z  ||  e 
<->  ( z  ||  A  /\  z  ||  B ) ) )  ->  d  =  e ) )
28 breq2 3933 . . . . . 6  |-  ( d  =  e  ->  (
z  ||  d  <->  z  ||  e ) )
2928bibi1d 232 . . . . 5  |-  ( d  =  e  ->  (
( z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  <-> 
( z  ||  e  <->  ( z  ||  A  /\  z  ||  B ) ) ) )
3029ralbidv 2437 . . . 4  |-  ( d  =  e  ->  ( A. z  e.  ZZ  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  <->  A. z  e.  ZZ  ( z  ||  e  <->  ( z  ||  A  /\  z  ||  B ) ) ) )
3130rmo4 2877 . . 3  |-  ( E* d  e.  NN0  A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  <->  A. d  e.  NN0  A. e  e.  NN0  (
( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  A. z  e.  ZZ  ( z  ||  e 
<->  ( z  ||  A  /\  z  ||  B ) ) )  ->  d  =  e ) )
3227, 31sylibr 133 . 2  |-  ( ph  ->  E* d  e.  NN0  A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) ) )
33 reu5 2643 . 2  |-  ( E! d  e.  NN0  A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  <->  ( E. d  e.  NN0  A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  E* d  e.  NN0  A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) ) ) )
347, 32, 33sylanbrc 413 1  |-  ( ph  ->  E! d  e.  NN0  A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417   E!wreu 2418   E*wrmo 2419   class class class wbr 3929  (class class class)co 5774    + caddc 7623    x. cmul 7625   NN0cn0 8977   ZZcz 9054    || cdvds 11493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fz 9791  df-fl 10043  df-mod 10096  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-dvds 11494
This theorem is referenced by:  dfgcd3  11698  bezout  11699
  Copyright terms: Public domain W3C validator